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Outline of This Tutorial

@ (First Hour) Part I: A Survey of Sequential Models

@ (Second Hour) Part II: A Deep Dive into State-Space Models



Outline of Part |

© Introduction to sequential models

@ Recurrent units and related models

© More advanced sequential models
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A Simplified Setting

In this talk, we observe a sequence of vectors uy, ..

to predict an output vector y € RP.
Input

,up € R™ We want

Output

HEBHEBHH

u; up uz Uy Us Uy U

Model
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Why not use a simple MLP?
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@ The sequence may have varying length, independent of the
making the MLP not applicable. sequence length L.

© The sequence may come in sequence, making the inference
impossible until we receive the full input.
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Sequential Natures

(2]

The sequence may be long, making the The number of

MLP too large and training too inefficient. | parameters should be
The sequence may have varying length, independent of the
making the MLP not applicable. sequence length L.

The sequence may come in sequence, making the inference
impossible until we receive the full input.

=

Yesterday is gone: Tog row has not

yet come. To i n we must act
to change the iMpression of our past
and pave th d to ourfutures.

The sequence may contain temporal relationships that cannot be
captured by the inductive bias of an MLP.

2
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What Makes a Good Sequence Model?

A good sequence model is one that is ...
@ Expressive and Accurate

o Theoretical expressiveness
e Empirical accuracy

Q Efficient

o Time complexity
o Space complexity
o Parallelizability
© Easy to train
o Can we escape from a local minimum?
o Does the model always converge?

© ... (e.g., robustness to noises, multiscale modeling)
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A Historical Overview

1980

The Beginning
RNNs

LSTMs

2014 Golden Age of Recurrent Units

GRUs
Seq2Seq
RNNsearch
Unitary RNNs
2017 Rise of Transformers

Attention is all you need

BERT, GPT

Very Long Sequences
Longformer, etc.

State Space Models

Long Expressive Memory Models

2019

2021 GenAlI for Sequences

Chat-GPT, LLaMA, Diffusion Models, etc.
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update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

Xy = tanh(Wlxk,l + Uuy + bl),
Yk = ReLU(szk + b2)

Hyperbolic Tangent: tanh Sigmoid: o
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Recurrent Neural Networks

A recurring theme in sequential models is to keep a latent state and
update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

Xy = tanh(Wlxk,l + Uuy + bl),
Yk = ReLU(szk + b2)

Unrolling an RNN:
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proximators.

(Schafer and Zimmermann, 2006)
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Consider a finite-horizon dynamical
system

Is the maze solvable?

Xk = f(Xk—1,Uk),

Yk = g(xk)a

where f is measurable and g is
continuous. It is arbitrarily close
(in the operator sense) to an RNN
with a potentially larger latent
state-space dimension (i.e., the
size of x).
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Efficiency of RNNs

On a CPU...
@ As L — oo, the computational time of the model is O(L).
@ As L — oo, the space complexity is O(L) for training and O(1) for
inferencing.
On a GPU...
@ The gradient has to be computed recurrently. Hence, no
parallelization can be done along the time axis. In particular, it takes
O(L - time per step) even on a GPU.

Not until | finish

Is there anything my part

'L 'L (\'L
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RNNs are not stable over training. They suffer from the infamous
vanishing and exploding gradient issues.

Gradients of a Linear RNN

Consider a simplified linear RNN with no bias term: x, = Wx,_; + Uuy.
Given a generic loss function L, the gradient is

IL I W
aw Z@xk oW ; axkZ Xk

If p(W) > 1, then |W/||, explodes
exponentially as j — oo.
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Training Stability of RNNs

RNNs are not stable over training. They suffer from the infamous
vanishing and exploding gradient issues.

Gradients of a Linear RNN

Consider a simplified linear RNN with no bias term: x, = Wx,_; + Uuy.
Given a generic loss function L, the gradient is

AL dx ST
aw Zaxkaw Z 8xk§ Xk

If p(W) > 1, then |W/||; explodes  If p(W) < 1, then ||W/||, vanishes
exponentially as j — oc. exponentially as j — oc.

Sk

Z

-
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Why Do We Observe Vanishing/Exploding Gradients?

The memory of an input is dampened or magnified by a constant factor.

o 10 Q!
T}
Q)

pW) >1

€00

p(W) < 1 o i
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T YRS =Y o]
p(Wy) varies 1O, = : ! :O: Q1
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Why Do We Observe Vanishing/Exploding Gradients?

If we can make the memory decay or amplify differently at every step,
then we can reduce the vanishing/exploding gradient issues.

ST YRs } =Y o]
p(Wy) varies 1O, = :O: : O ! :O:
1O 1 1 -4 1 ! Q!
- 1! :_O_, :O: L=
Q)
k=1 2 3 4 5

This is partially why a deep MLP does not suffer from such issues.
Unfortunately, we cannot train a different W for each step k. We need
to be smarter in constructing the recurrent unit.
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Long Short-Term Memory

Long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] is
a variant of an SSM that incorporates a long-term memory cell.

Xk = 0 o tanh(cy), O
Ox = U(Woxkfl + Uouy + b0)7

¢, = frock_1 +ixo&k, 10!

i
1
]
1
1
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Long Short-Term Memory

Long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] is
a variant of an SSM that incorporates a long-term memory cell.

Xk = 0 o tanh(cy), i
ok = 0(Woxk—1 + Uoux + bo),
ckx = frock_1 + ik 0 Ek,

fi = o(Wexk—1 + Uruk + by),

ik = o(Wixk—1 + Uiuk + by),

€c = tanh(Wexk—1 + Ucuk + be).

i
1
1
1
v

Xlemmm 4
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Long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] is
a variant of an SSM that incorporates a Iong term memory cell.

Xk = 0 o tanh(cy),

ok = 0(Woxk—1 + Uoux + bo),
ckx = frock_1 + ik 0 Ek,

fi = o(Wexk—1 + Uruk + by),

ik = o(Wixk—1 + Uiuk + by),

€c = tanh(Wexk—1 + Ucuk + be).
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Gated Recurrent Unit

Gated recurrent units (GRUs) [Cho et al., 2014] are similar to LSTMs in
many sense.

xk = (1 — zx) 0 Xk—1 + 2k © X,
zix = 0(Wzxk—1 + Uzui + b,),
%, = tanh(Wi(rkoxk—1)+Uxux+bn),
ri = o(Wxe—1 + Uruk + by),
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Properties of LSTMs and GRUs

LSTMs and GRUs are ...
@ Are universal approximators.
@ Share the same time and space complexities with RNNs.
@ Suffer less from the vanishing or exploding gradient issues.

o Key idea: the memory decay/enhancement is not constant per step.
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Transformers

Transformers form a class of models that are wildly used in NLP and CV.

QOutput
Probabilities

Add & Norm

Feed
Forward
Add & Norm

Multi-Head

Attention N [Vaswani et al.,

Add & Norm

Feed
Forward

(Add & Norm Je= 2017]
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A ) A )
\ —)
Positional N Positional
Encoding Y Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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The backbone of a transformer is called the attention mechanism.

Compared to recurrent models, attention explicitly seeks a connection
between every pair of elements in a sequence.

i i i o)
ol ol 0! 0!
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azn a2

k,' = WkX,',
qi = WqX,'7
Vi = W\,X,'7

-
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The backbone of a transformer is called the attention mechanism.
Compared to recurrent models, attention explicitly seeks a connection
between every pair of elements in a sequence.

€21 €2 €23 _ CaL
1

an A A3 _ A21
r

ki = Wix;,
q; = Wex;,
v, = Wyx;,
a3 =q k
. _onley/Va)

> exp(ag/Vd)’
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Transformers

The backbone of a transformer is called the attention mechanism.
Compared to recurrent models, attention explicitly seeks a connection
between every pair of elements in a sequence.

ki = Wix;,

q; = Wex;,

vi = W,x;,

aj = qj k;

N ONY)

Y exp(ag/Vd)’
L
yi = Z CijV;.
j=1
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the attention takes O(L?) as L — oc. ki = Wiexi, q; = Wox;,
vi=W,x;, a3 =q; kj
exp(a;/Vd)

Cij = =L ., U
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@ Every element in the sequence is in a symmetric position. There is
no natural inductive bias over the time axis.
@ Without any parallelization, computing

the attention takes O(L?) as L — oc. ki = Wixi, q; = Wgx;,

@ However, it is very parallelizable ... vi=Wyxi, a; = q; k;
i— VAL dyp —Yi By

exp(a;/Vd)

Cij = =L ., U
> -1 exp(a/Vd)
L
Yi :Z CijVj-
j=1
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@ Every element in the sequence is in a symmetric position. There is
no natural inductive bias over the time axis.
@ Without any parallelization, computing

the attention takes O(L?) as L — oc. ki = Wixi, q; = Wgx;,
@ However, it is very parallelizable ... vi=Wyxi, a; = q; k;
i— VAL dyp —Yi By
o for inferencing;
_ exp(az/Vd)

e
>y exp(az/V/d)
L
Yi=) G
j=1
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Properties of Transformers

@ Every element in the sequence is in a symmetric position. There is
no natural inductive bias over the time axis.
@ Without any parallelization, computing
the attention takes O(L?) as L — oc. ki = Wiexi, q; = Wox;,
@ However, it is very parallelizable ... vi=W,yx;, a;=q; k;
o for inferencing;

o for backpropagation, but the softmax = M,
raises some difficulties in Zj:l eXP(aij/\/g)

parallelization. L
yi= E CijVj-
=1
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Properties of Transformers

@ Every element in the sequence is in a symmetric position. There is
no natural inductive bias over the time axis.
@ Without any parallelization, computing
the attention takes O(L?) as L — oc. ki = Wiexi, q; = Wox;,
@ However, it is very parallelizable ... vi=W,yx;, a;=q; k;
o for inferencing;

o for backpropagation, but the softmax ci= M’
raises some difficulties in Zj:l eXP(aij/\/g)
parallelization. L

o Check out linear attention y,-:z CijVj.
[Katharopoulos et al., 2020] and j=1

FlashAttention [Dao et al., 2022]!

@ The model is not causal, so one cannot evaluate it without the
entire sequence.

o Check out masking!
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State-Space Models

A state space model (SSM) [Gu et al., 2022] is very similar to an RNN.
Its recurrent units are based on linear, time-invariant (LTI) systems

x'(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).
Wait... but your sequence is discrete.

We have to discretize the system with respect to some trainable sampling
period At > 0:

Bilinear
A=(1-AA/2)71+AA72)
B=(1-4,A/2)7AB
C=C,D=D /\
/ Continuous LTI Syste g/ Discrets LTI System N\
X'(t) = Ax(t) + Bu(f) ) or Xj.1 = Ax; +Bu,
\ \ = Cx(f) + Du(t)_o .
ZOH
A = exp(AA)
B = A" (exp(4,A)-1)B
C=C,D=D
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SSMs vs RNNs

RNN SSM

xk:tanh(W1Xk71+Uuk+b1) x’(t):Ax(t)—&—Bu(t) X, =Ax,_1 + Buyg
or _ _
yx =ReLU(Wjx,+by) y(t)=Cx(t)+Du(t) y« =Cx, + Duy
STOP COPYING ME.
STOP COPYING ME.
STOP COPYING ME.
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SSMs vs RNNs

RNN SSM

xi =tanh(Wixx_1+Uu,+by)  x'(t)=Ax(t)+Bu(t) Xx=Ax,_1 + Buy
or _ _
Y« =ReLU(Wox, +by) y(t)=Cx(t)+Du(t) yx =Cx, + Duy
STOP COPYING ME.
STOPCOPYNGME. \\hat are the main differences between an RNN
STOP COPYING ME.

sropco;;wuc,mg and an SSM?
@ An RNN is nonlinear while an SSM is linear.

@ An RNN is completely discrete while an SSM
has an underlying continuous system.
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Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Time Domain

JIBBBAB-B(-|HBEHBHEH

u; u; uz uy us ug Uy Y1 Y2 ¥3 Ya Y5 Y6 YL

Can be computed in parallel J i i

Frequency Domain

| WANT TO [JRERR
KNOW MORE [ i

FEH B HEHEH EH - HH

CB CAB CA?B CA’BCA“B CAB CA'B
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The gradient is the gradient. It doesn’'t matter how you compute it.
Then, why doesn’t an SSM suffer from the vanishing and exploding

gradient issues?

Answer: by discretizing the system with a small At!

o By restricting A(A) in the left half-plane, we guarantee that

p(A) < 1.
—

A(A)
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Training Stability of SSMs

The gradient is the gradient. It doesn’'t matter how you compute it.
Then, why doesn’t an SSM suffer from the vanishing and exploding

gradient issues?

Answer: by discretizing the system with a small At!

o By restricting A(A) in the left half-plane, we guarantee that

p(A) < 1.

@ By setting At small, we have that p(A) is close to one.

: bilinear .
transform !

i withasmall A,

A(A) :
- 7T~ _unitcircle :
) LNy H
P PN
. N
.,
\
\® o
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N ’
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The gradient is the gradient. It doesn’'t matter how you compute it.
Then, why doesn’t an SSM suffer from the vanishing and exploding
gradient issues?
Answer: by discretizing the system with a small At!
o By restricting A(A) in the left half-plane, we guarantee that
p(A) < 1.

@ By setting At small, we have that p(A) is close to one.
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Training Stability of SSMs

The gradient is the gradient. It doesn’'t matter how you compute it.
Then, why doesn’t an SSM suffer from the vanishing and exploding
gradient issues?

Answer: by discretizing the system with a small At!

o By restricting A(A) in the left half-plane, we guarantee that
p(A) < 1.

@ By setting At small, we have that p(A) is close to one.

l WANT TO Stay here for the
KNOW MORE [T
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Mambas

SSMs are good at learning tasks that involve long-range dependencies,
but their vanilla forms do not lead to good language models.

One of the reasons is that in an SSM, every element in a sequence is
processed using the same mechanism. The Mamba models [Gu and Dao,
2023] fix this issue by letting B and C depend on the input.

SSM Mamba

x'(t)=Ax(t)+Bu(t) x'(t)=Ax(t)+B(u(t))u(t)

y(t)=Cx(t)+Du(t) y(t)=C(u(t))x(t)+Du(t)
[ >{o]

HEdelS S —EFb-0

* Not shown: At also depends on u
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Right now, the success of Mamba is justified by its capability of
“selectively memorizing” the sequence.
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Properties of Mamba

The dynamical system in Mamba is time-variant. Hence, it cannot be
evaluated using a convolution. However, efficient parallel algorithms exist.
Right now, the success of Mamba is justified by its capability of
“selectively memorizing” the sequence.

)
Lecturer: we'll go throqulel ! Lecturer: let’s talk"about'sequence models!
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Outline of Part Il

© Recap of state-space models

@ The “real” story

© The “imaginary” story
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Recap of State-Space Models
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Linear, Time-Invariant Systems

A state space model (SSM) [Gu et al., 2022] leverages linear,
time-variant (LTI) systems as its recurrent unit:

x'(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
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Linear, Time-Invariant Systems

A state space model (SSM) [Gu et al., 2022] leverages linear,
time-variant (LTI) systems as its recurrent unit:

x'(t) = Ax(t) + Bu(t),
Cx(t) + Du(t).

<

—~~
~

~
|

We have to discretize the system with respect to some trainable sampling

period At > 0:
Bilinear
=(1-AA/2)7 Y 1+AA/2)
= (@I-A,A/2)7AB
C=C,D=D /\
# Continuous LTI System Discrete_LTI Sy_stem N\
X'(t) = Ax(t) + Bu(f) ) or Xj = Ax; + Bu/ >
ZOH

A = exp(A,A)
B=A" (eprA) I)
C=C
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RNN SSM

xk:tanh(W1Xk71+Uuk+b1) x’(t):Ax(t)—&—Bu(t) X, =Ax,_1 + Buyg
or _ _
yx =ReLU(Wjx,+by) y(t)=Cx(t)+Du(t) y« =Cx, + Duy
STOP COPYING ME.
STOP COPYING ME.
STOP COPYING ME.

sToP CO!;’YING ME.
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xi =tanh(Wixx_1+Uu,+by)  x'(t)=Ax(t)+Bu(t) Xx=Ax,_1 + Buy
or _ _
Y« =ReLU(Wox, +by) y(t)=Cx(t)+Du(t) yx =Cx, + Duy
STOP COPYING ME.
STOPCOPYNGME. \\hat are the main differences between an RNN
STOP COPYING ME.

sropco;;wuc,mg and an SSM?
@ An RNN is nonlinear while an SSM is linear.

@ An RNN is completely discrete while an SSM
has an underlying continuous system.
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@ We have to backpropagate through an RNN recurrently. Assuming a
sequence as a length of L, it takes O(L - time per step).
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@ We have to backpropagate through an RNN recurrently. Assuming a
sequence as a length of L, it takes O(L - time per step).
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R ALY

@ An RNN suffers from the exploding or vanishing gradient issues,
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Two Weaknesses of RNNs

@ We have to backpropagate through an RNN recurrently. Assuming a
sequence as a length of L, it takes O(L - time per step).

)\ / Notuntil | finish
Is there anything C "
I can take on?_/ Vodas

/ =

R ALY

@ An RNN suffers from the exploding or vanishing gradient issues,
impairing the training stability or the long-range memory retention.

§u‘w

e
If p(W) > 1, then |[W/[), ex- If p(W) < 1, then ||W/|, van-
plodes exponentially as j — oco. ishes exponentially as j — co.
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Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Time Domain

FEH B EER FEH R B - B

CB CAB CA?B CA’BCA*B CAB CAL'B

JIBBBHEB-8|-|HBEHEHEH

U Uy Uz Uy Us Ug U Y1 Y2 ¥3 Va4 ¥5 Yo VL

Can be computed in parallel

Assume we have L processors that can be run in parallel.
@ Time complexity of RNN: O(L - time per step).
e Time complexity of SSM: O(L + time per step).
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An LTI system is linear. Hence, it can be evaluated more easily.

Time Domain
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An LTI system is linear. Hence, it can be evaluated more easily.

Time Domain

FEH B EER FEH R B - B

CB CAB CA?B CA’BCA*B CAB CAL'B

*

Can be computed in parallel
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Y1 Y2 ¥3 Y4 Y5 Ve
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Frequency Domain
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Can be computed in parallel J
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An LTI system is linear. Hence, it can be evaluated more easily.

Time Domain

FEH B R HER R B -

CB CAB CA?B CA’BCA*B CAB CAL'B

Can be computed in parallel J

Frequency Domain

HEHEBBEH

u; u; Uz uy Us Uy U

_|(BEHEHEHH

Y1 Y2 Y3 Y4 Y5 Y6 YL

g

@@@@@@ gi:il B

G(w3) G(ws) G(ws) G(ws) G(wr)

G(@1) G(w,

HEHBBEHH

A A A A A A

1.11 u2 l.l3 l‘l4 u5 1‘16 llL

\ ’
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|G(z) = C(d-A) "B +D|
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An SSM can be Made Deep

The LTI system is linear.

Itcan’t capture nonlinear dynamics.

t is not as expressive as ag RNN

An LTI system is linear, but an SSM is not.

84D, $4, 85 ...

o
f Nonlinearity7

o Omm
B
« ogm
"B
;Eecoder;
Output

=

Continuous LTI System
X'(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
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Training Stability of SSMs

The gradient is the gradient. It doesn't matter how you compute it.
Then, why doesn’'t an SSM suffer from the vanishing and exploding

gradient issues?

Answer: by discretizing the system with a small At!

@ By restricting A(A) in the left half-plane, we guarantee that

p(A) < 1.

e By setting At small, we have that p(A) is close to one.
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SSMs can Capture the Long-Range Dependency

Long-Range Dependency # Long-Range Sequence

Model ListOps Text Retrieval 1Image Pathfinder Path-X Avg.
(Input length) (2,048) (4,096) (4,000) (1,024) (1,024) (16,384)

Transformer 36.37 64.27 57.46 42.44 71.40 X 53.66
Luna-256 37.25 64.57 79.29 47.38 77.72 X 59.37
H-Trans.-1D 49.53 78.69 63.99 46.05 68.78 X 61.41
CCNN 43.60 84.08 X 88.90 91.51 X 68.02
Mega (O(L?)) 63.14 90.43 91.25 90.44 96.01 97.98 88.21
Mega-chunk (O(L)) 58.76 90.19 90.97 85.80 94.41 93.81 85.66
S4D-LegS 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S4-LegS 59.60 86.82 90.90 88.65 94.20 96.35 86.09
Liquid-S4 62.75 89.02 91.20 89.50 94.8 96.66 87.32

S5 62.15 89.31 91.40 88.00 95.33 98.58 87.46
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We saw that one can compute an LTI system from its transfer function:
9(s) = G(is)a(s), G(is) = C(isl — A)™'B + D.

A key question is: how can we efficiently sample G?
From now on, we assume that an LTI system is single-input/single-output
(SISO). Moreover, the matrix A is diagonal.
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9(s) = G(is)a(s), G(is) = C(isl — A)™'B + D.
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We saw that one can compute an LTI system from its transfer function:
9(s) = G(is)a(s), G(is) = C(isl — A)™'B + D.

A key question is: how can we efficiently sample G?
From now on, we assume that an LTI system is single-input/single-output
(SISO). Moreover, the matrix A is diagonal.
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As mentioned earlier, some key insights could be obtained by studying
the spectrum of A. When A = diag(ay, ..., a,) is diagonal, we have
AA) ={a1,...,an}
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The “Real” Story

cf. HOPE for a Robust Parameterization of Long-memory State Space Models


https://arxiv.org/abs/2405.13975
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Initializing an SSM

SSMs are very sensitive to Traditionally, HIPPO was justified by the
initialization. You may have idea of “projecting onto orthogonal
heard of the so-called HIPPO  polynomials and storing the polynomial
initialization. coefficients.”
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SSMs are very sensitive to
initialization. You may have
heard of the so-called HiPPO
initialization.
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Traditionally, HIPPO was justified by the
idea of “projecting onto orthogonal
polynomials and storing the polynomial
coefficients.”
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initialization. You may have
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Traditionally, HIPPO was justified by the
idea of “projecting onto orthogonal
polynomials and storing the polynomial
coefficients.”
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A Mystery

We train an SSM to learn the sequential CIFAR-10 task. We use different
LTI systems at initialization.

Accuracy

o
S
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A Mystery

We train an SSM to learn the sequential CIFAR-10 task. We use different
LTI systems at initialization.

920

—+—Random I', (trained)

Accuracy
(o2}
o

—=—Random r, (untrained)

o
S

—#—Random T, (trained)

—=—Random I, (untrained)
—%—HiPPO-LegS Iy (trained) | o
—a—HiPPO-LegS Ty (untrained)

40

30 I I I I I I
0 60 70 80 90 100
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Hankel Singular Values

@ The Hankel operator associated with a continuous-time LTI system is

H : 12(0,00) - [2(0,00), (Hv)(t) / Cexp((t-+7)A)Bv(r)d7

@ The Hankel matrix associated with a discrete LTI system is

H: 2> H,;=CA'B, ij>o.

Bilinear Transform

Discrete LTI System
Xee1 = A X + B uy
yr =Cxc+Du

Continuous LTI System
x'(t) = Ax(t) + Bu(t)
(t) = Cx(t) + Du(t)
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Hankel Singular Values

@ The Hankel operator associated with a continuous-time LTI system is

H : 12(0,00) - [2(0,00), (Hv)(t) / Cexp((t-+7)A)Bv(r)d7

@ The Hankel matrix associated with a discrete LTI system is
i+js

H:2 ¢ H,;=CA"B, ij>o.

Bilinear Transform
/—\ .
(’ Hankel Operator > Hankel Singular Value Hankel Ma
/ 01y -+, 0y

Discrete LTI System
Xee1 = A X + B uy
yr =Cxc+Du

Continuous LTI System
x'(t) = Ax(t) + Bu(t)
(t) = Cx(t) + Du(t)
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Reduced-Order Modeling with Hankel Singular Values

For any k < n, there exists an LTI system r= (Ré,é, Ij) with
A c C*k such that

n

IG = Glloe < D 0j(H) < (n = K)oxsa(H),
Jj=k+1

where G and G are the transfer functions of I and f respectively,
and || - ||co is the infinity norm over the imaginal axis.
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Reduced-Order Modeling with Hankel Singular Values

For any k < n, there exists an LTI system [ = (A,B,C, D) with
A € Ck*k such that

n

IG = Glloe < D 0j(H) < (n = K)oxsa(H),
Jj=k+1

where G and G are the transfer functions of I and f respectively,
and || - ||co is the infinity norm over the imaginal axis.

Hence, fast decaying Hankel singular values = many states in x are

redundant.

A B
| can do A B
whatever H

you can

Oo,FEE B
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Unravel the Mystery

Accuracy

|~+-Random ', (trined)
~-Random I, (untrained)
—+~Random I’ (trained)
~s-Random I, (untrained)
40147 —+—HiPPO-LegS T, (trained)
~e-HiPPO-LegS I'; (unirained)

Hankel singular values of I'3:
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Unravel the Mystery
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Unravel the Mystery
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© From a random matrix theory perspective, high-rank LTI systems are
scarce. Hence, even with a proper initialization, one can easily lose
numerical ranks during training.

Space Parameterized by (A, B, C)

The e-rank of a random LTI sys-
tem, i.e., the number of Hankel
singular values o; with
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making an SSM potentially not numerically stable over training.

When an LTI system in perturbed with
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The transfer function perturbation can be bounded by
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Moreover, this bound is tight up to a factor of n.
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Two Weaknesses of SSMs

@ The numerical stability of an LTI system depends on its parameters,
making an SSM potentially not numerically stable over training.

When an LTI system in perturbed with
||A*A||max<AA7 ||BOCT7éOéTHmax§AB-

The transfer function perturbation can be bounded by

16 — Glloo < ng max ——— + 4nA max —2GL
j [Re(aj)] 77 |Re(a)))|

Moreover, this bound is tight up to a factor of n.

“[the Hankel singular values] decay more rapidly the farther the A(A)
falls in the left half of the complex plane.” — [Baker et al., 2015]
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HOPE State-Space Models
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The Hopes of HOPE

@ A Hankel matrix has slowly decaying singular values:

The e-rank of an n x n random Hankel matrix is almost surely
O(n) as n — oo.

At Initialization
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The Hopes of HOPE

@ A Hankel matrix has slowly decaying singular values:

The e-rank of an n x n random Hankel matrix is almost surely
O(n) as n — oo.

@ A Hankel matrix is perfectly stable to perturbation:

Suppose we perturb h to h. Then, we have

IG = Gl < Vnllh — 2.

At Initialization After 10 Epochs
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© A HOPE-SSM has slow-decaying memory.
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The Hopes of HOPE
© A HOPE-SSM has slow-decaying memory.
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represent a rational function.
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Recall that the transfer function G(z) is a rational function. Different
ways to parameterize an LTI system correspond to different ways to

represent a rational function.

Name Formula Parameterization Models
Partial Fraction > zbf; diagonal A S4D/S5
J
s .
Barycentric Formula i e diag.-plus-rank-one A S4
1+3°7, z—JZJ-
HOPE

Laurent Series

Z_j"’:l h_/lzij

Hankel matrix
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The “Imaginary” Story

cf. Tuning Frequency Bias of State Space Models


https://arxiv.org/abs/2410.02035
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easily fitting high-frequency noises,
making it good at generalization.
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Why Do Neural Networks Generalize That Well?

One partial answer to the question from the title is called frequency bias:
== target function g
= neural network \

AL
W W

Epoch increases

Good News. Bad News.
Frequency bias prevents a NN from Frequency bias puts a curse on
easily fitting high-frequency noises, learning useful high-frequency

making it good at generalization. information in the target.
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There is a very natural notion of frequency for SSMs, i.e., the frequency
along the time axis.

We observe that SSMs also have frequency bias.

Problem Formulation

Model Output

Mean Error

Results
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You may have imagined that
frequency bias means that the
output y(t) is of low frequency
when the input u(t) contains high
frequencies.

Unfortunately, this is not the case.

Frequency bias means an LTI
system is better at distinguishing
the low-frequency signals than the
high-frequency ones.
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The gradient of a generic loss £ with re-
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Why Do SSMs Have Frequency Bias?

@ An SSM is o Will training push the eigenvalues of A to the
initialized with high-frequency region?
frequency bias.
The gradient of a generic loss £ with re-
TSSO A - e
N S spect to Im(aj) satisfies
| i or ~ o
| . 5% : 7:/ ——— - Kj(s) ds,
: : .?_uo %)- : 8Im(aj) —co aG(IS)
L[ EE IKi(s)| = O (Is — Im(2))| ).
e e ;
Ve : Hence, a; only learns “local” frequencies.
. e | 6 : :
1 | —Ground Truth
I ® I —Trainable LTI
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Tuning Frequency Bias via Initialization

We can tune the frequency bias by scaling the initialization. In particular,
we multiply each Im(aj) by a hyperparameter o > 0.
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Tuning Frequency Bias via Training

We can apply a Sobolev-norm-based filter to the transfer function:
§(s) = (1 +[s))"G(is)as).

Intuitively, 8 reweighs the frequency domain.

@ 3 < 0= low frequencies are weighted more, frequency bias is
enhanced.

e 3 > 0= low frequencies are weighted less, frequency bias is
diminished.

Surprisingly, § also affects the training.

The gradient of a generic loss £ with respect to Im(a;) satisfies

oL [ AL
dim(a) ). a6 i (8) s

K7(s)| = O (Is — Im(a)| >*7) .
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The hyperparameter « is a “hard” tuning strategy while 5 gives us a
“soft” way.

0 imaginary axis/

*The first tuning mechanism can be extended further  frequency domain
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Problem Formulation Results
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Conclusion:

@ SSMs are linear RNNs that allow fast and numerically stable
computation.

@ Hankel singular values explain the success or failure of an SSM.
HOPE gives a more robust parameterization.

© Frequency bias helps avoid overgeneralization but also prevents us
from learning high-frequency information. Consider changing the
hyperparameters a and (3 to tune frequency bias.

Future Work:
@ How do the real and the imaginary story interact?
@ Controls in SSMs.
© SSMs for GenAl.
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