Seq. Models
 RNNs
 More Models

 00000
 00000000
 00000000

Recap of SSMs 0000000 The Real Story

The Imaginary Story 00000000

How Does a Machine Learn Sequences: an Applied Mathematician's Guide to Transformers, State-Space Models, Mamba, and Beyond

> Annan Yu Center for Applied Mathematics, Cornell University

> > October 22, 2024

Outline of This Tutorial

(First Hour) Part I: A Survey of Sequential Models

(Second Hour) Part II: A Deep Dive into State-Space Models

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000
-					

Outline of Part I

Introduction to sequential models

Precurrent units and related models

More advanced sequential models

Seq. Models

NNs 00000000 More Models

Recap of SSMs 0000000 The Real Story

The Imaginary Story 00000000

Introduction to Sequential Models

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
0000	0000000	0000000	0000000	00000000	0000000

Sequential Data in Real World

Seq. Models	1
0000	

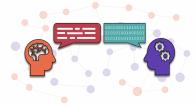
NNs 00000000 More Models

Recap of SSMs 0000000 The Real Story

The Imaginary Story 00000000

Sequential Data in Real World

Natural Language Processing



Seq.	Models
•00	00

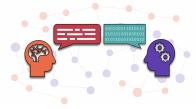
RNNs 00000000 More Models

Recap of SSMs 0000000 The Real Story

The Imaginary Story 00000000

Sequential Data in Real World

Natural Language Processing



Computer Vision

Seq.	Models
	000

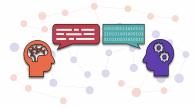
RNNs 00000000 More Models

Recap of SSMs 0000000 The Real Story

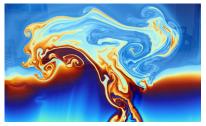
The Imaginary Story 00000000

Sequential Data in Real World

Natural Language Processing



Scientific Applications



Computer Vision

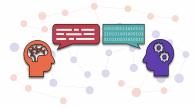
Seq.	Models
•00	000

RNNs 00000000 More Models

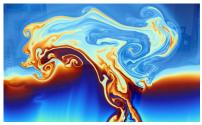
Recap of SSMs 0000000 The Real Story 000000000 The Imaginary Story 00000000

Sequential Data in Real World

Natural Language Processing

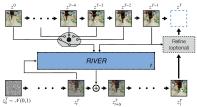


Scientific Applications



Computer Vision

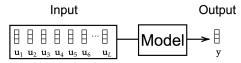
Generative AI



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
0000	0000000	0000000	000000	00000000	0000000

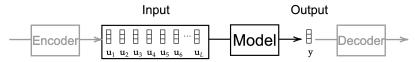
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
0000	0000000	0000000	000000	00000000	0000000

In this talk, we observe a sequence of vectors $\mathbf{u}_1, \ldots, \mathbf{u}_L \in \mathbb{R}^m$. We want to predict an output vector $\mathbf{y} \in \mathbb{R}^p$.



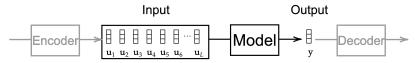
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
0000	0000000	0000000	000000	00000000	0000000

In this talk, we observe a sequence of vectors $\mathbf{u}_1, \ldots, \mathbf{u}_L \in \mathbb{R}^m$. We want to predict an output vector $\mathbf{y} \in \mathbb{R}^p$.

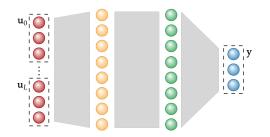


Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
0000	0000000	0000000	000000	00000000	0000000

In this talk, we observe a sequence of vectors $\mathbf{u}_1, \ldots, \mathbf{u}_L \in \mathbb{R}^m$. We want to predict an output vector $\mathbf{y} \in \mathbb{R}^p$.



Why not use a simple MLP?



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

• The sequence may be long, making the MLP too large and training too inefficient.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

- The sequence may be long, making the MLP too large and training too inefficient.
- The sequence may have varying length, making the MLP not applicable.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
0000	0000000	0000000	000000	00000000	0000000

- The sequence may be long, making the MLP too large and training too inefficient.
- The sequence may have varying length, making the MLP not applicable.

The number of parameters should be independent of the sequence length *L*.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

- The sequence may be long, making the MLP too large and training too inefficient.
- The sequence may have varying length, making the MLP not applicable.

The number of parameters should be independent of the sequence length *L*.

The sequence may come in sequence, making the inference impossible until we receive the full input.

Yesterday is gone. Tomorrow has not yet come. Today is when we must act to change the impression of our past and pave the road to our futures.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

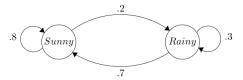
- The sequence may be long, making the MLP too large and training too inefficient.
- The sequence may have varying length, making the MLP not applicable.

The number of parameters should be independent of the sequence length *L*.

The sequence may come in sequence, making the inference impossible until we receive the full input.

> Yesterday is gone. Tomorrow has not yet come. Today is when we must act to change the impression of our past and pave the road to our futures.

The sequence may contain temporal relationships that cannot be captured by the inductive bias of an MLP.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

A good sequence model is one that is ...

Expressive and Accurate

- Expressive and Accurate
 - Theoretical expressiveness

- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy

- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy
- e Efficient

- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy
- e Efficient
 - Time complexity

- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy
- e Efficient
 - Time complexity
 - Space complexity

- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy
- 2 Efficient
 - Time complexity
 - Space complexity
 - Parallelizability

- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy
- 2 Efficient
 - Time complexity
 - Space complexity
 - Parallelizability
- Easy to train

- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy
- 2 Efficient
 - Time complexity
 - Space complexity
 - Parallelizability
- Easy to train
 - Can we escape from a local minimum?

- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy
- 2 Efficient
 - Time complexity
 - Space complexity
 - Parallelizability
- Easy to train
 - Can we escape from a local minimum?
 - Does the model always converge?

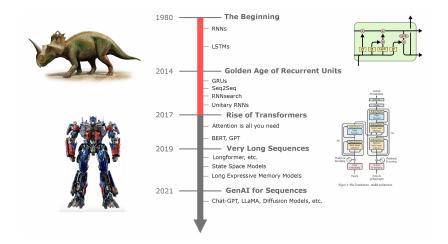
- Expressive and Accurate
 - Theoretical expressiveness
 - Empirical accuracy
- 2 Efficient
 - Time complexity
 - Space complexity
 - Parallelizability
- Easy to train
 - Can we escape from a local minimum?
 - Does the model always converge?
- ... (e.g., robustness to noises, multiscale modeling)

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

A Historical Overview

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

A Historical Overview



Seq. Models

RNN5 200000000 More Models

Recap of SSMs 0000000 The Real Story

The Imaginary Story

Recurrent Units

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	000000000	0000000

Recurrent Neural Networks

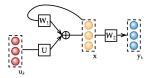
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

$$\begin{aligned} \mathbf{x}_k &= \mathsf{tanh}(\mathbf{W}_1\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_k + \mathbf{b}_1), \\ \mathbf{y}_k &= \mathsf{ReLU}(\mathbf{W}_2\mathbf{x}_k + \mathbf{b}_2). \end{aligned}$$

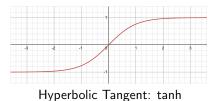
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

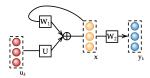
$$\begin{split} \mathbf{x}_k &= \tanh(\mathbf{W}_1\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_k + \mathbf{b}_1), \\ \mathbf{y}_k &= \mathsf{ReLU}(\mathbf{W}_2\mathbf{x}_k + \mathbf{b}_2). \end{split}$$



$$\mathbf{x}_{k} = \tanh(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1}),$$

$$\mathbf{y}_{k} = \operatorname{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2}).$$





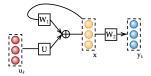
$$\mathbf{x}_{k} = \tanh(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1}),$$

$$\mathbf{y}_{k} = \operatorname{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2}).$$

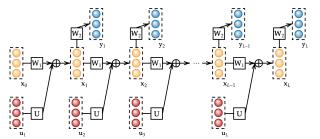
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

A recurring theme in sequential models is to keep a latent state and update it with new inputs. Recurrent neural networks (RNNs) form a most straightforward example of this idea.

$$\begin{aligned} \mathbf{x}_k &= \tanh(\mathbf{W}_1 \mathbf{x}_{k-1} + \mathbf{U} \mathbf{u}_k + \mathbf{b}_1), \\ \mathbf{y}_k &= \operatorname{ReLU}(\mathbf{W}_2 \mathbf{x}_k + \mathbf{b}_2). \end{aligned}$$



Unrolling an RNN:



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story
00000	0000000	0000000	0000000	00000000

The Imaginary Story 0000000

Expressiveness of RNNs

Seq.	Models	
000	000	

RNNs 00000000 More Models

Recap of SSMs 0000000 The Real Story

The Imaginary Story 00000000

Expressiveness of RNNs

Good news: RNNs are universal approximators.

(Schäfer and Zimmermann, 2006)

Consider a finite-horizon dynamical system

$$\mathbf{x}_k = f(\mathbf{x}_{k-1}, \mathbf{u}_k),$$

 $\mathbf{y}_k = g(\mathbf{x}_k),$

where f is measurable and g is continuous. It is arbitrarily close (in the operator sense) to an RNN with a potentially larger latent state-space dimension (i.e., the size of x).

Seq. Models 00000	RNNs O●OOOOOO	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story		
Expressiveness of RNNs							

Good news: RNNs are universal approximators.

(Schäfer and Zimmermann, 2006)

Consider a finite-horizon dynamical system

$$\mathbf{x}_k = f(\mathbf{x}_{k-1}, \mathbf{u}_k),$$

 $\mathbf{y}_k = g(\mathbf{x}_k),$

where f is measurable and g is continuous. It is arbitrarily close (in the operator sense) to an RNN with a potentially larger latent state-space dimension (i.e., the size of x). Bad news: RNNs are empirically bad at capturing long-range dependencies (LRD).

Seq. Models	RNNs	More Models	Recap of SSMs	The Real S
00000	0000000	0000000	0000000	000000

Expressiveness of RNNs

Good news: RNNs are universal approximators.

(Schäfer and Zimmermann, 2006)

Consider a finite-horizon dynamical system

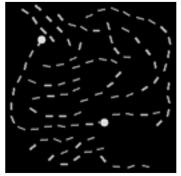
$$\mathbf{x}_k = f(\mathbf{x}_{k-1}, \mathbf{u}_k),$$

 $\mathbf{y}_k = g(\mathbf{x}_k),$

where f is measurable and g is continuous. It is arbitrarily close (in the operator sense) to an RNN with a potentially larger latent state-space dimension (i.e., the size of **x**).

Bad news: RNNs are empirically bad at capturing long-range dependencies (LRD).

Is the maze solvable?



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story
00000	0000000	00000000	0000000	00000000

Expressiveness of RNNs

Good news: RNNs are universal approximators.

(Schäfer and Zimmermann, 2006)

Consider a finite-horizon dynamical system

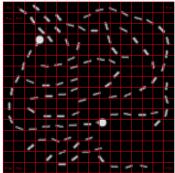
$$\mathbf{x}_k = f(\mathbf{x}_{k-1}, \mathbf{u}_k),$$

 $\mathbf{y}_k = g(\mathbf{x}_k),$

where f is measurable and g is continuous. It is arbitrarily close (in the operator sense) to an RNN with a potentially larger latent state-space dimension (i.e., the size of x). Bad news: RNNs are empirically bad at capturing long-range dependencies (LRD).

The Imaginary Story

Is the maze solvable?



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

On a CPU...

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

On a CPU...

• As $L \to \infty$, the computational time of the model is $\mathcal{O}(L)$.

00000	000000	0000000	0000000	00000000	0000000
Seq. Models	RNNs			· · · · · · · · · · · · · · · · · · ·	The Imaginary Story

On a CPU...

- As $L \to \infty$, the computational time of the model is $\mathcal{O}(L)$.
- As $L \to \infty$, the space complexity is $\mathcal{O}(L)$ for training and $\mathcal{O}(1)$ for inferencing.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	000000000	0000000

On a CPU...

- As $L \to \infty$, the computational time of the model is $\mathcal{O}(L)$.
- As $L \to \infty$, the space complexity is $\mathcal{O}(L)$ for training and $\mathcal{O}(1)$ for inferencing.

On a GPU...

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

On a CPU...

- As $L \to \infty$, the computational time of the model is $\mathcal{O}(L)$.
- As $L \to \infty$, the space complexity is $\mathcal{O}(L)$ for training and $\mathcal{O}(1)$ for inferencing.

On a GPU...

• The gradient has to be computed recurrently. Hence, no parallelization can be done along the time axis. In particular, it takes $\mathcal{O}(L \cdot \text{time per step})$ even on a GPU.

00000 0000000 0000000 0000000 0000000 000000	
	000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	000000000	0000000

RNNs are not stable over training. They suffer from the infamous vanishing and exploding gradient issues.

000000 000 0000 00000000 00000000 00000000	Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
	00000	0000000	0000000	000000	00000000	0000000

RNNs are not stable over training. They suffer from the infamous vanishing and exploding gradient issues.

Gradients of a Linear RNN

Consider a simplified linear RNN with no bias term: $\mathbf{x}_k = \mathbf{W}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_k$. Given a generic loss function \mathcal{L} , the gradient is

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \sum_{k=1}^{L} \frac{\partial \mathcal{L}}{\partial \mathbf{x}_{k}} \frac{\partial \mathbf{x}_{k}}{\partial \mathbf{W}} = \sum_{k=1}^{L} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{x}_{k}} \sum_{j=1}^{k-1} \mathbf{W}^{j} \mathbf{x}_{k-j} \right)$$

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

RNNs are not stable over training. They suffer from the infamous vanishing and exploding gradient issues.

Gradients of a Linear RNN

Consider a simplified linear RNN with no bias term: $\mathbf{x}_k = \mathbf{W}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_k$. Given a generic loss function \mathcal{L} , the gradient is

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \sum_{k=1}^{L} \frac{\partial \mathcal{L}}{\partial \mathbf{x}_{k}} \frac{\partial \mathbf{x}_{k}}{\partial \mathbf{W}} = \sum_{k=1}^{L} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{x}_{k}} \sum_{j=1}^{k-1} \mathbf{W}^{j} \mathbf{x}_{k-j} \right)$$

If $\rho(\mathbf{W}) > 1$, then $\|\mathbf{W}^j\|_2$ explodes exponentially as $j \to \infty$.

000000 000 0000 00000000 00000000 00000000	Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
	00000	0000000	0000000	000000	00000000	0000000

RNNs are not stable over training. They suffer from the infamous vanishing and exploding gradient issues.

Gradients of a Linear RNN

Consider a simplified linear RNN with no bias term: $\mathbf{x}_k = \mathbf{W}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_k$. Given a generic loss function \mathcal{L} , the gradient is

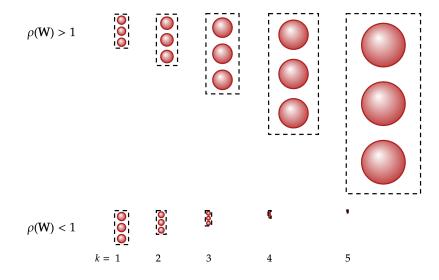
$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}} = \sum_{k=1}^{L} \frac{\partial \mathcal{L}}{\partial \mathbf{x}_{k}} \frac{\partial \mathbf{x}_{k}}{\partial \mathbf{W}} = \sum_{k=1}^{L} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{x}_{k}} \sum_{j=1}^{k-1} \mathbf{W}^{j} \mathbf{x}_{k-j} \right)$$

If $\rho(\mathbf{W}) > 1$, then $\|\mathbf{W}^j\|_2$ explodes exponentially as $j \to \infty$.

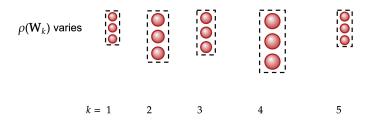
If $\rho(\mathbf{W}) < 1$, then $\|\mathbf{W}^j\|_2$ vanishes exponentially as $j \to \infty$.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	0000000	000000	00000000	0000000

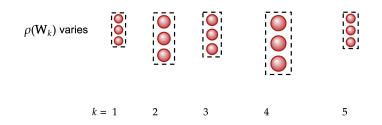
The memory of an input is dampened or magnified by a constant factor.



If we can make the memory decay or amplify differently at every step, then we can reduce the vanishing/exploding gradient issues.



If we can make the memory decay or amplify differently at every step, then we can reduce the vanishing/exploding gradient issues.



This is partially why a deep MLP does not suffer from such issues. Unfortunately, we cannot train a different \mathbf{W}_k for each step k. We need to be smarter in constructing the recurrent unit.

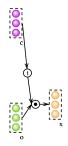
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story
00000	00000000	0000000	0000000	00000000

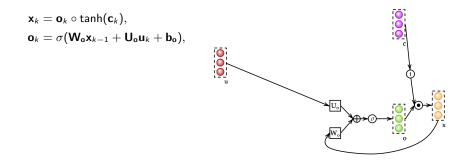
The Imaginary Story 0000000

Long Short-Term Memory

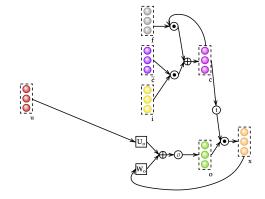
Long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] is a variant of an SSM that incorporates a long-term memory cell.

 $\mathbf{x}_k = \mathbf{o}_k \circ \tanh(\mathbf{c}_k),$

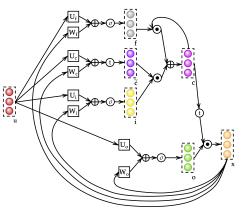


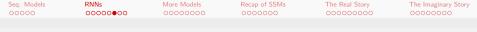


$$\begin{split} \mathbf{x}_k &= \mathbf{o}_k \circ \tanh(\mathbf{c}_k), \\ \mathbf{o}_k &= \sigma(\mathbf{W}_{\mathbf{o}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{o}}\mathbf{u}_k + \mathbf{b}_{\mathbf{o}}) \\ \mathbf{c}_k &= \mathbf{f}_k \circ \mathbf{c}_{k-1} + \mathbf{i}_k \circ \tilde{\mathbf{c}}_k, \end{split}$$

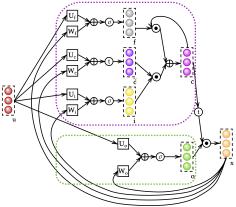


$$\begin{split} \mathbf{x}_k &= \mathbf{o}_k \circ tanh(\mathbf{c}_k), \\ \mathbf{o}_k &= \sigma(\mathbf{W}_{\mathbf{o}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{o}}\mathbf{u}_k + \mathbf{b}_{\mathbf{o}}), \\ \mathbf{c}_k &= \mathbf{f}_k \circ \mathbf{c}_{k-1} + \mathbf{i}_k \circ \tilde{\mathbf{c}}_k, \\ \mathbf{f}_k &= \sigma(\mathbf{W}_{\mathbf{f}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{f}}\mathbf{u}_k + \mathbf{b}_{\mathbf{f}}), \\ \mathbf{i}_k &= \sigma(\mathbf{W}_{\mathbf{i}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{i}}\mathbf{u}_k + \mathbf{b}_{\mathbf{i}}), \\ \tilde{\mathbf{c}}_k &= tanh(\mathbf{W}_{\mathbf{c}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{c}}\mathbf{u}_k + \mathbf{b}_{\mathbf{c}}). \end{split}$$





$$\begin{split} \mathbf{x}_k &= \mathbf{o}_k \circ \tanh(\mathbf{c}_k), \\ \mathbf{o}_k &= \sigma(\mathbf{W}_{\mathbf{o}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{o}}\mathbf{u}_k + \mathbf{b}_{\mathbf{o}}), \\ \mathbf{c}_k &= \mathbf{f}_k \circ \mathbf{c}_{k-1} + \mathbf{i}_k \circ \tilde{\mathbf{c}}_k, \\ \mathbf{f}_k &= \sigma(\mathbf{W}_{\mathbf{f}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{f}}\mathbf{u}_k + \mathbf{b}_{\mathbf{f}}), \\ \mathbf{i}_k &= \sigma(\mathbf{W}_{\mathbf{i}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{i}}\mathbf{u}_k + \mathbf{b}_{\mathbf{i}}), \\ \tilde{\mathbf{c}}_k &= \tanh(\mathbf{W}_{\mathbf{c}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{c}}\mathbf{u}_k + \mathbf{b}_{\mathbf{c}}). \end{split}$$



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Sto
00000	0000000	00000000	0000000	00000000	0000000

Gated Recurrent Unit

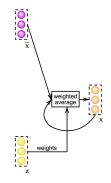
Gated Recurrent Unit

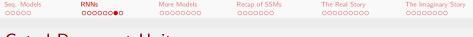
Gated recurrent units (GRUs) [Cho et al., 2014] are similar to LSTMs in many sense.

Gated Recurrent Unit

Gated recurrent units (GRUs) [Cho et al., 2014] are similar to LSTMs in many sense.

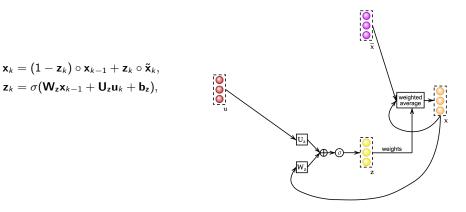
 $\mathbf{x}_k = (1 - \mathbf{z}_k) \circ \mathbf{x}_{k-1} + \mathbf{z}_k \circ \tilde{\mathbf{x}}_k,$





Gated Recurrent Unit

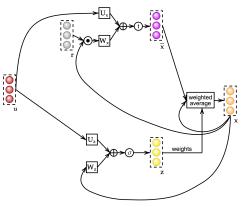
Gated recurrent units (GRUs) [Cho et al., 2014] are similar to LSTMs in many sense.



Gated Recurrent Unit

Gated recurrent units (GRUs) [Cho et al., 2014] are similar to LSTMs in many sense.

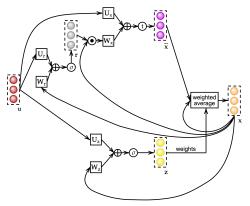
$$egin{aligned} \mathbf{x}_k &= (1-\mathbf{z}_k) \circ \mathbf{x}_{k-1} + \mathbf{z}_k \circ \widetilde{\mathbf{x}}_k, \ \mathbf{z}_k &= \sigma(\mathbf{W}_{\mathbf{z}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{z}}\mathbf{u}_k + \mathbf{b}_{\mathbf{z}}), \ \widetilde{\mathbf{x}}_k &= ext{tanh}(\mathbf{W}_{\mathbf{x}}(\mathbf{r}_k \circ \mathbf{x}_{k-1}) + \mathbf{U}_{\mathbf{x}}\mathbf{u}_k + \mathbf{b}_{\mathbf{h}}). \end{aligned}$$



Gated Recurrent Unit

Gated recurrent units (GRUs) [Cho et al., 2014] are similar to LSTMs in many sense.

$$\begin{split} \mathbf{x}_k &= (1 - \mathbf{z}_k) \circ \mathbf{x}_{k-1} + \mathbf{z}_k \circ \tilde{\mathbf{x}}_k, \\ \mathbf{z}_k &= \sigma(\mathbf{W}_{\mathbf{z}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{z}}\mathbf{u}_k + \mathbf{b}_{\mathbf{z}}), \\ \tilde{\mathbf{x}}_k &= \tanh(\mathbf{W}_{\mathbf{x}}(\mathbf{r}_k \circ \mathbf{x}_{k-1}) + \mathbf{U}_{\mathbf{x}}\mathbf{u}_k + \mathbf{b}_{\mathbf{h}}), \\ \mathbf{r}_k &= \sigma(\mathbf{W}_{\mathbf{r}}\mathbf{x}_{k-1} + \mathbf{U}_{\mathbf{r}}\mathbf{u}_k + \mathbf{b}_{\mathbf{r}}), \end{split}$$



Seq. Models	RNNs	More Models	Recap of SSMs	The Rea
00000	0000000	00000000	0000000	0000

The Real Story

The Imaginary Story 00000000

Properties of LSTMs and GRUs

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

Properties of LSTMs and GRUs

Seq. Models	RNNs	More Models	Recap of SSMs
00000	0000000	0000000	000000

The Real Story

The Imaginary Story 00000000

Properties of LSTMs and GRUs

LSTMs and GRUs are ...

Are universal approximators.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

Properties of LSTMs and GRUs

- Are universal approximators.
- **②** Share the same time and space complexities with RNNs.

Seq. Mode	s RNNs	More Models	Recap of SSMs	The Real Story	-
00000	0000000	0000000	0000000	00000000	

The Imaginary Story

Properties of LSTMs and GRUs

- Are universal approximators.
- **②** Share the same time and space complexities with RNNs.
- Suffer less from the vanishing or exploding gradient issues.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary St
00000	0000000	00000000	0000000	00000000	00000000

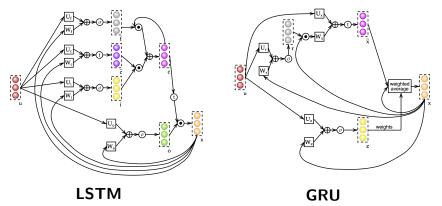
Properties of LSTMs and GRUs

- Are universal approximators.
- **②** Share the same time and space complexities with RNNs.
- Suffer less from the vanishing or exploding gradient issues.
 - Key idea: the memory decay/enhancement is not constant per step.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	00000000	0000000

Properties of LSTMs and GRUs

- Are universal approximators.
- Share the same time and space complexities with RNNs.
- Suffer less from the vanishing or exploding gradient issues.
 - Key idea: the memory decay/enhancement is not constant per step.



Seq. Models

RNNs 00000000 More Models

Recap of SSMs 0000000 The Real Story

The Imaginary Story

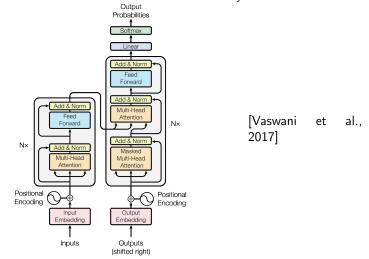
Other Sequential Models

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

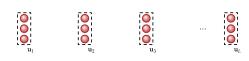
Transformers

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story
Transform	hers				

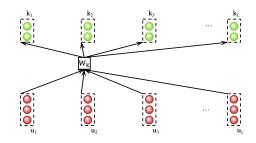
Transformers form a class of models that are wildly used in NLP and CV.



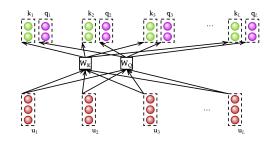
Seq. Models	RNN₅	More Models	Recap of SSMs	The Real Story	The Imaginary Story 0000000
00000	00000000	●0000000	0000000	000000000	
Transfo	rmers				



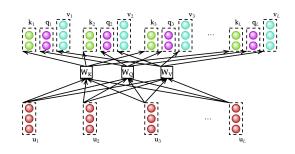
 $\mathbf{k}_i = \mathbf{W}_{\mathbf{k}} \mathbf{x}_i,$

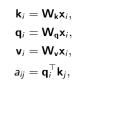


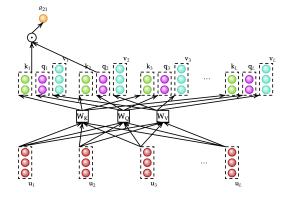
 $\begin{aligned} \mathbf{k}_i &= \mathbf{W}_{\mathbf{k}} \mathbf{x}_i, \\ \mathbf{q}_i &= \mathbf{W}_{\mathbf{q}} \mathbf{x}_i, \end{aligned}$

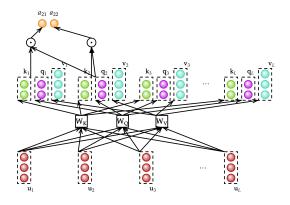


 $\begin{aligned} \mathbf{k}_i &= \mathbf{W}_{\mathbf{k}} \mathbf{x}_i, \\ \mathbf{q}_i &= \mathbf{W}_{\mathbf{q}} \mathbf{x}_i, \\ \mathbf{v}_i &= \mathbf{W}_{\mathbf{v}} \mathbf{x}_i, \end{aligned}$

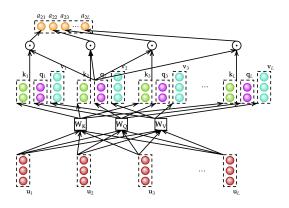


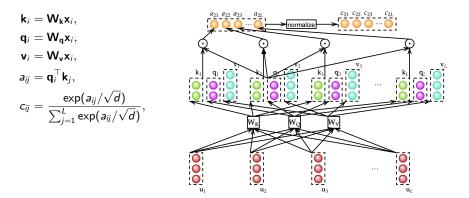


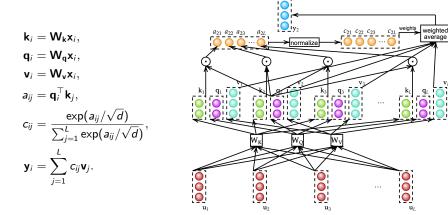




$$\begin{split} \mathbf{k}_i &= \mathbf{W}_{\mathbf{k}} \mathbf{x}_i, \\ \mathbf{q}_i &= \mathbf{W}_{\mathbf{q}} \mathbf{x}_i, \\ \mathbf{v}_i &= \mathbf{W}_{\mathbf{v}} \mathbf{x}_i, \\ a_{ij} &= \mathbf{q}_i^\top \mathbf{k}_j, \end{split}$$







Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story
00000	0000000	0000000	0000000	00000000

The Imaginary Story 00000000

Properties of Transformers

• Every element in the sequence is in a symmetric position. There is no natural inductive bias over the time axis.

- Every element in the sequence is in a symmetric position. There is no natural inductive bias over the time axis.
- Without any parallelization, computing the attention takes $\mathcal{O}(L^2)$ as $L \to \infty$.

$$\mathbf{k}_{i} = \mathbf{W}_{\mathbf{k}} \mathbf{x}_{i}, \mathbf{q}_{i} = \mathbf{W}_{\mathbf{q}} \mathbf{x}_{i},$$
$$\mathbf{v}_{i} = \mathbf{W}_{\mathbf{v}} \mathbf{x}_{i}, a_{ij} = \mathbf{q}_{i}^{\top} \mathbf{k}_{j},$$
$$c_{ij} = \frac{\exp(a_{ij}/\sqrt{d})}{\sum_{j=1}^{L} \exp(a_{ij}/\sqrt{d})},$$
$$\mathbf{y}_{i} = \sum_{j=1}^{L} c_{ij} \mathbf{v}_{j}.$$

- Every element in the sequence is in a symmetric position. There is no natural inductive bias over the time axis.
- Without any parallelization, computing the attention takes O(L²) as L → ∞.
- However, it is very parallelizable ...

 $\begin{aligned} \mathbf{k}_{i} &= \mathbf{W}_{\mathbf{k}} \mathbf{x}_{i}, \mathbf{q}_{i} = \mathbf{W}_{\mathbf{q}} \mathbf{x}_{i}, \\ \mathbf{v}_{i} &= \mathbf{W}_{\mathbf{v}} \mathbf{x}_{i}, a_{ij} = \mathbf{q}_{i}^{\top} \mathbf{k}_{j}, \\ c_{ij} &= \frac{\exp(a_{ij}/\sqrt{d})}{\sum_{j=1}^{L} \exp(a_{ij}/\sqrt{d})}, \\ \mathbf{y}_{i} &= \sum_{j=1}^{L} c_{ij} \mathbf{v}_{j}. \end{aligned}$

- Every element in the sequence is in a symmetric position. There is no natural inductive bias over the time axis.
- Without any parallelization, computing the attention takes O(L²) as L → ∞.
- However, it is very parallelizable ...
 - for inferencing;

$$\begin{aligned} \mathbf{k}_{i} &= \mathbf{W}_{\mathbf{k}} \mathbf{x}_{i}, \mathbf{q}_{i} = \mathbf{W}_{\mathbf{q}} \mathbf{x}_{i}, \\ \mathbf{v}_{i} &= \mathbf{W}_{\mathbf{v}} \mathbf{x}_{i}, a_{ij} = \mathbf{q}_{i}^{\top} \mathbf{k}_{j}, \\ c_{ij} &= \frac{\exp(a_{ij}/\sqrt{d})}{\sum_{j=1}^{L} \exp(a_{ij}/\sqrt{d})}, \\ \mathbf{y}_{i} &= \sum_{j=1}^{L} c_{ij} \mathbf{v}_{j}. \end{aligned}$$

- Every element in the sequence is in a symmetric position. There is no natural inductive bias over the time axis.
- Without any parallelization, computing the attention takes O(L²) as L → ∞.
- However, it is very parallelizable ...
 - for inferencing;
 - for backpropagation, but the softmax raises some difficulties in parallelization.

$$\begin{aligned} \mathbf{k}_{i} &= \mathbf{W}_{\mathbf{k}} \mathbf{x}_{i}, \mathbf{q}_{i} = \mathbf{W}_{\mathbf{q}} \mathbf{x}_{i}, \\ \mathbf{v}_{i} &= \mathbf{W}_{\mathbf{v}} \mathbf{x}_{i}, a_{ij} = \mathbf{q}_{i}^{\top} \mathbf{k}_{j}, \\ c_{ij} &= \frac{\exp(a_{ij}/\sqrt{d})}{\sum_{j=1}^{L} \exp(a_{ij}/\sqrt{d})}, \\ \mathbf{y}_{i} &= \sum_{j=1}^{L} c_{ij} \mathbf{v}_{j}. \end{aligned}$$

- Every element in the sequence is in a symmetric position. There is no natural inductive bias over the time axis.
- Without any parallelization, computing the attention takes O(L²) as L → ∞.
- However, it is very parallelizable ...
 - for inferencing;
 - for backpropagation, but the softmax raises some difficulties in parallelization.
 - Check out linear attention [Katharopoulos et al., 2020] and FlashAttention [Dao et al., 2022]!

 $\mathbf{k}_{i} = \mathbf{W}_{\mathbf{k}}\mathbf{x}_{i}, \mathbf{q}_{i} = \mathbf{W}_{\mathbf{q}}\mathbf{x}_{i},$ $\mathbf{v}_{i} = \mathbf{W}_{\mathbf{v}}\mathbf{x}_{i}, a_{ij} = \mathbf{q}_{i}^{\top}\mathbf{k}_{j},$ $c_{ij} = \frac{\exp(a_{ij}/\sqrt{d})}{\sum_{j=1}^{L}\exp(a_{ij}/\sqrt{d})},$ $\mathbf{y}_{i} = \sum_{i=1}^{L}c_{ij}\mathbf{v}_{j}.$

- Every element in the sequence is in a symmetric position. There is no natural inductive bias over the time axis.
- Without any parallelization, computing the attention takes O(L²) as L → ∞.
- However, it is very parallelizable ...
 - for inferencing;
 - for backpropagation, but the softmax raises some difficulties in parallelization.
 - Check out linear attention [Katharopoulos et al., 2020] and FlashAttention [Dao et al., 2022]!

$$\begin{aligned} \mathbf{k}_{i} &= \mathbf{W}_{\mathbf{k}} \mathbf{x}_{i}, \mathbf{q}_{i} = \mathbf{W}_{\mathbf{q}} \mathbf{x}_{i}, \\ \mathbf{v}_{i} &= \mathbf{W}_{\mathbf{v}} \mathbf{x}_{i}, a_{ij} = \mathbf{q}_{i}^{\top} \mathbf{k}_{j}, \\ c_{ij} &= \frac{\exp(a_{ij}/\sqrt{d})}{\sum_{j=1}^{L} \exp(a_{ij}/\sqrt{d})}, \\ \mathbf{y}_{i} &= \sum_{j=1}^{L} c_{ij} \mathbf{v}_{j}. \end{aligned}$$

i=1

 The model is not causal, so one cannot evaluate it without the entire sequence.

- Every element in the sequence is in a symmetric position. There is no natural inductive bias over the time axis.
- Without any parallelization, computing the attention takes O(L²) as L → ∞.
- However, it is very parallelizable ...
 - for inferencing;
 - for backpropagation, but the softmax raises some difficulties in parallelization.
 - Check out linear attention [Katharopoulos et al., 2020] and FlashAttention [Dao et al., 2022]!

$$egin{aligned} \max & c_{ij} = rac{\exp(a_{ij}/\sqrt{d})}{\sum_{j=1}^{L}\exp(a_{ij}/\sqrt{d})} \ & \mathbf{y}_i = \sum_{j=1}^{L}c_{ij}\mathbf{v}_j. \end{aligned}$$

 $\mathbf{k}_i = \mathbf{W}_{\mathbf{k}} \mathbf{x}_i, \mathbf{q}_i = \mathbf{W}_{\mathbf{q}} \mathbf{x}_i,$

 $\mathbf{v}_i = \mathbf{W}_{\mathbf{v}} \mathbf{x}_i, a_{ii} = \mathbf{g}_i^\top \mathbf{k}_i$

- The model is not causal, so one cannot evaluate it without the entire sequence.
 - Check out masking!

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

A state space model (SSM) [Gu et al., 2022] is very similar to an RNN. Its recurrent units are based on linear, time-invariant (LTI) systems

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t),$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t).$

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

A state space model (SSM) [Gu et al., 2022] is very similar to an RNN. Its recurrent units are based on linear, time-invariant (LTI) systems

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t),$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t).$

Wait... but your sequence is discrete.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

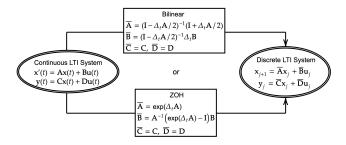
A state space model (SSM) [Gu et al., 2022] is very similar to an RNN. Its recurrent units are based on linear, time-invariant (LTI) systems

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t),$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t).$

Wait... but your sequence is discrete.

We have to discretize the system with respect to some trainable sampling period $\Delta t > 0$:



00000	0000000	0000000	0000000	00000000	0000000
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story

SSMs vs RNNs

Seq. Models 00000	RNNs 00000000	More Models 000€0000	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
SSMex	s RNNs				
551VIS V					

$\mathbf{x}_{k} = \tanh(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1})$ $\mathbf{y}_{k} = \operatorname{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2})$

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000
SSMs v	/s RNNs				

SSM

$$\begin{aligned} \mathbf{x}_{k} &= \mathsf{tanh}(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1}) & \mathbf{x}'(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) & \mathbf{x}_{k} &= \mathbf{A}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{u}_{k} \\ \mathbf{y}_{k} &= \mathsf{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2}) & \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) & \mathsf{or} & \mathbf{y}_{k} &= \mathbf{\overline{C}}\mathbf{x}_{k} + \mathbf{\overline{D}}\mathbf{u}_{k} \end{aligned}$$

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs	The Real Story 000000000	The Imaginary Story
SSMs v	s RNNs				

SSM

$$\mathbf{x}_k = \mathsf{tanh}(\mathbf{W}_1 \mathbf{x}_{k-1} + \mathbf{U} \mathbf{u}_k + \mathbf{b}_1)$$

$$\mathbf{y}_k = \mathsf{ReLU}(\mathbf{W}_2 \mathbf{x}_k + \mathbf{b}_2)$$

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \qquad \mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \qquad \text{or} \qquad \mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$$

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story	The Imaginary Story
SSMs vs	s RNNs				

SSM

k

$$\begin{aligned} \mathbf{x}_{k} &= \mathsf{tanh}(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1}) & \mathbf{x}'(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) & \mathbf{x}_{k} &= \mathbf{A}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{u} \\ \mathbf{y}_{k} &= \mathsf{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2}) & \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) & \mathbf{y}_{k} &= \mathbf{\overline{C}}\mathbf{x}_{k} + \mathbf{\overline{D}}\mathbf{u}_{k} \end{aligned}$$

What are the main differences between an RNN and an SSM?

- An RNN is nonlinear while an SSM is linear.
- An RNN is completely discrete while an SSM has an underlying continuous system.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

An LTI system is linear. Hence, it can be evaluated more easily.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	00000000	0000000

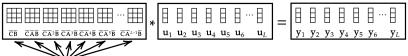
An LTI system is linear. Hence, it can be evaluated more easily.

Time Domain

Can be computed in parallel

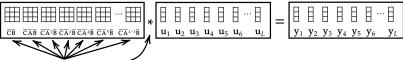
An LTI system is linear. Hence, it can be evaluated more easily.

Time Domain



An LTI system is linear. Hence, it can be evaluated more easily.

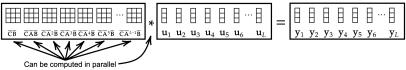
Time Domain



Can be computed in parallel

An LTI system is linear. Hence, it can be evaluated more easily.

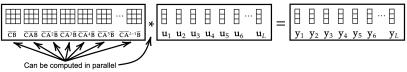
Time Domain



Assume we have *L* processors that can be run in parallel.

An LTI system is linear. Hence, it can be evaluated more easily.

Time Domain

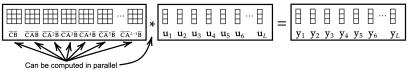


Assume we have L processors that can be run in parallel.

• Time complexity of RNN: $\mathcal{O}(L \cdot \text{ time per step})$.

An LTI system is linear. Hence, it can be evaluated more easily.

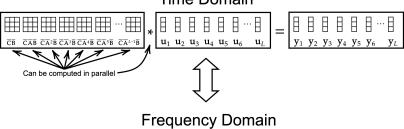
Time Domain



Assume we have *L* processors that can be run in parallel.

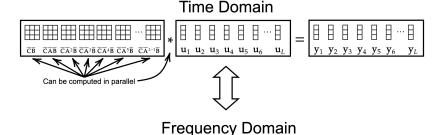
- Time complexity of RNN: $O(L \cdot \text{ time per step})$.
- Time complexity of SSM: O(L + time per step).

An LTI system is linear. Hence, it can be evaluated more easily.

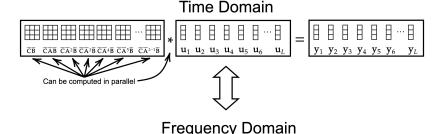


Time Domain

An LTI system is linear. Hence, it can be evaluated more easily.



An LTI system is linear. Hence, it can be evaluated more easily.



Stay here for the second half of the tutorial!

Seq. Models	RNNs	More Models
00000	0000000	000000000

Recap of SSMs 0000000 The Real Story 000000000 The Imaginary Story 00000000

Training Stability of SSMs

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	000000000	0000000	000000000	0000000

The gradient is the gradient. It doesn't matter how you compute it.

The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

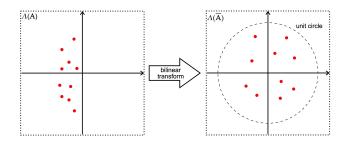
The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

Answer: by discretizing the system with a small $\Delta t!$

The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

Answer: by discretizing the system with a small $\Delta t!$

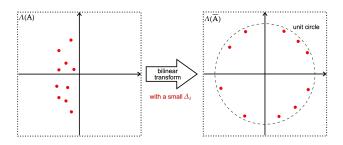
• By restricting $\Lambda(\mathbf{A})$ in the left half-plane, we guarantee that $\rho(\overline{\mathbf{A}}) < 1$.



The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

Answer: by discretizing the system with a small $\Delta t!$

- By restricting $\Lambda(\mathbf{A})$ in the left half-plane, we guarantee that $\rho(\overline{\mathbf{A}}) < 1$.
- By setting Δt small, we have that $\rho(\overline{\mathbf{A}})$ is close to one.



The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

Answer: by discretizing the system with a small $\Delta t!$

- By restricting $\Lambda(\mathbf{A})$ in the left half-plane, we guarantee that $\rho(\overline{\mathbf{A}}) < 1$.
- By setting Δt small, we have that $\rho(\overline{\mathbf{A}})$ is close to one.

I WANT TO KNOW MORE

The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

Answer: by discretizing the system with a small $\Delta t!$

- By restricting $\Lambda(\mathbf{A})$ in the left half-plane, we guarantee that $\rho(\overline{\mathbf{A}}) < 1$.
- By setting Δt small, we have that $\rho(\overline{\mathbf{A}})$ is close to one.

I WANT TO KNOW MORE

Stay here for the second half of the tutorial!

Seq. Models 00000	RNN₅ 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story
Mambas					

	Models 000	RNNs 00000000	More Models 000000●0	Recap of SSMs 0000000	The Real Story 00000000	The Imaginary Story
Μ	lambas					

SSMs are good at learning tasks that involve long-range dependencies, but their vanilla forms do not lead to good language models.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000		0000000	000000000	00000000
Mambas					

SSMs are good at learning tasks that involve long-range dependencies, but their vanilla forms do not lead to good language models. One of the reasons is that in an SSM, every element in a sequence is processed using the same mechanism. The Mamba models [Gu and Dao, 2023] fix this issue by letting **B** and **C** depend on the input.

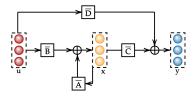
Seq. Models 00000	RNN₅ 00000000	More Models 000000●0	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
Mamba	S				

SSMs are good at learning tasks that involve long-range dependencies, but their vanilla forms do not lead to good language models. One of the reasons is that in an SSM, every element in a sequence is processed using the same mechanism. The Mamba models [Gu and Dao, 2023] fix this issue by letting **B** and **C** depend on the input.

SSM

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$



Seq. Models 00000	RNNs 00000000	More Models ○○○○○○●○	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000		
Mambas							

SSMs are good at learning tasks that involve long-range dependencies, but their vanilla forms do not lead to good language models. One of the reasons is that in an SSM, every element in a sequence is processed using the same mechanism. The Mamba models [Gu and Dao, 2023] fix this issue by letting **B** and **C** depend on the input.

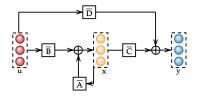
SSM

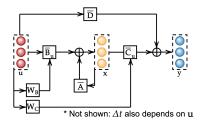
$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

Mamba

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}(\mathbf{u}(t))\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}(\mathbf{u}(t))\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$



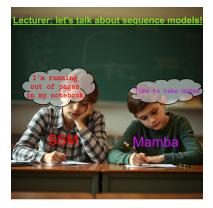


Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

The dynamical system in Mamba is time-variant. Hence, it cannot be evaluated using a convolution. However, efficient parallel algorithms exist.

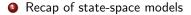
The dynamical system in Mamba is time-variant. Hence, it cannot be evaluated using a convolution. However, efficient parallel algorithms exist. Right now, the success of Mamba is justified by its capability of "selectively memorizing" the sequence.

The dynamical system in Mamba is time-variant. Hence, it cannot be evaluated using a convolution. However, efficient parallel algorithms exist. Right now, the success of Mamba is justified by its capability of "selectively memorizing" the sequence.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

Outline of Part II



O The "real" story

• The "imaginary" story

Seq. Models

:NNs)00000000 More Models

Recap of SSMs 0000000 The Real Story

The Imaginary Story 00000000

Recap of State-Space Models

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

Linear, Time-Invariant Systems

Linear, Time-Invariant Systems

A state space model (SSM) [Gu et al., 2022] leverages linear, time-variant (LTI) systems as its recurrent unit:

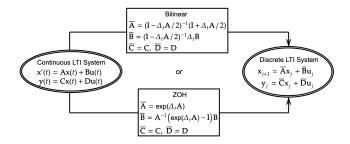
 $\begin{aligned} \mathbf{x}'(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t). \end{aligned}$

Linear, Time-Invariant Systems

A state space model (SSM) [Gu et al., 2022] leverages linear, time-variant (LTI) systems as its recurrent unit:

 $\begin{aligned} \mathbf{x}'(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t). \end{aligned}$

We have to discretize the system with respect to some trainable sampling period $\Delta t > 0$:



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

SSMs vs RNNs

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000		○●○○○○○	000000000	00000000
SSMs v	rs RNNs				

$\mathbf{x}_{k} = \tanh(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1})$ $\mathbf{y}_{k} = \operatorname{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2})$

Seq. Models	RNNs 00000000	More Models	Recap of SSMs 000000	The Real Story 000000000	The Imaginary Story
SSMs	vs RNNs				

SSM

$$\begin{aligned} \mathbf{x}_{k} &= \mathsf{tanh}(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1}) & \mathbf{x}'(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) & \mathbf{x}_{k} &= \mathbf{A}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{u}_{k} \\ \mathbf{y}_{k} &= \mathsf{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2}) & \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) & \mathsf{or} & \mathbf{y}_{k} &= \mathbf{\overline{C}}\mathbf{x}_{k} + \mathbf{\overline{D}}\mathbf{u}_{k} \end{aligned}$$

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	000000	00000000	0000000

SSMs vs RNNs

SSM

$$\mathbf{x}_k = \mathsf{tanh}(\mathbf{W}_1 \mathbf{x}_{k-1} + \mathbf{U} \mathbf{u}_k + \mathbf{b}_1)$$

$$\mathbf{y}_k = \mathsf{ReLU}(\mathbf{W}_2 \mathbf{x}_k + \mathbf{b}_2)$$

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \qquad \mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \qquad \text{or} \qquad \mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$$

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 000000	The Real Story 000000000	The Imaginary Story
SSMs v	s RNNs				

SSM

$$\begin{aligned} \mathbf{x}_k &= \mathsf{tanh}(\mathbf{W}_1 \mathbf{x}_{k-1} + \mathbf{U} \mathbf{u}_k + \mathbf{b}_1) & \mathbf{x}'(t) &= \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t) \\ \mathbf{y}_k &= \mathsf{ReLU}(\mathbf{W}_2 \mathbf{x}_k + \mathbf{b}_2) & \mathbf{y}(t) &= \mathbf{C} \mathbf{x}(t) + \mathbf{D} \mathbf{u}(t) & \mathsf{or} & \mathbf{y}_k &= \mathbf{\overline{C}} \mathbf{x}_k + \mathbf{\overline{D}} \mathbf{u}_k \end{aligned}$$

What are the main differences between an RNN and an SSM?

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 000000	The Real Story 000000000	The Imaginary Story
SSMs v	s RNNs				

SSM

$$\begin{aligned} \mathbf{x}_{k} &= \mathsf{tanh}(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1}) & \mathbf{x}'(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) & \mathbf{x}_{k} &= \mathbf{A}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{u}_{k} \\ \mathbf{y}_{k} &= \mathsf{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2}) & \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) & \mathsf{or} & \mathbf{y}_{k} &= \mathbf{\overline{C}}\mathbf{x}_{k} + \mathbf{\overline{D}}\mathbf{u}_{k} \end{aligned}$$

What are the main differences between an RNN and an SSM?

An RNN is nonlinear while an SSM is linear.

Seq. Models	RNNs 00000000	More Models	Recap of SSMs ○●○○○○○	The Real Story 000000000	The Imaginary Story
SSMs	vs RNNs				

SSM

$$\begin{aligned} \mathbf{x}_{k} &= \mathsf{tanh}(\mathbf{W}_{1}\mathbf{x}_{k-1} + \mathbf{U}\mathbf{u}_{k} + \mathbf{b}_{1}) & \mathbf{x}'(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) & \mathbf{x}_{k} &= \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_{k} \\ \mathbf{y}_{k} &= \mathsf{ReLU}(\mathbf{W}_{2}\mathbf{x}_{k} + \mathbf{b}_{2}) & \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) & \mathsf{or} & \mathbf{y}_{k} &= \overline{\mathbf{C}}\mathbf{x}_{k} + \overline{\mathbf{D}}\mathbf{u}_{k} \end{aligned}$$

What are the main differences between an RNN and an SSM?

- An RNN is nonlinear while an SSM is linear.
- An RNN is completely discrete while an SSM has an underlying continuous system.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

• We have to backpropagate through an RNN recurrently. Assuming a sequence as a length of L, it takes $\mathcal{O}(L \cdot \text{time per step})$.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

• We have to backpropagate through an RNN recurrently. Assuming a sequence as a length of L, it takes $\mathcal{O}(L \cdot \text{time per step})$.

An RNN suffers from the exploding or vanishing gradient issues, impairing the training stability or the long-range memory retention.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	000000000	0000000

• We have to backpropagate through an RNN recurrently. Assuming a sequence as a length of L, it takes $\mathcal{O}(L \cdot \text{time per step})$.

An RNN suffers from the exploding or vanishing gradient issues, impairing the training stability or the long-range memory retention.

If $\rho(\mathbf{W}) > 1$, then $\|\mathbf{W}^{j}\|_{2}$ explodes exponentially as $j \to \infty$.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

• We have to backpropagate through an RNN recurrently. Assuming a sequence as a length of L, it takes $\mathcal{O}(L \cdot \text{time per step})$.

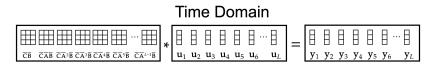
An RNN suffers from the exploding or vanishing gradient issues, impairing the training stability or the long-range memory retention.

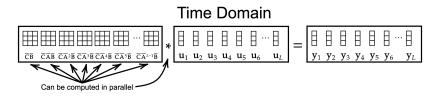
If $\rho(\mathbf{W}) > 1$, then $\|\mathbf{W}^j\|_2$ explodes exponentially as $j \to \infty$.

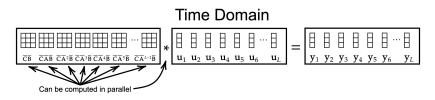
If $ho(\mathbf{W}) < 1$, then $\|\mathbf{W}^j\|_2$ vanishes exponentially as $j \to \infty$.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

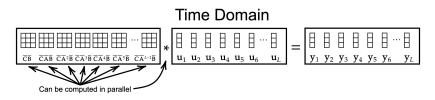
Efficiency of SSMs





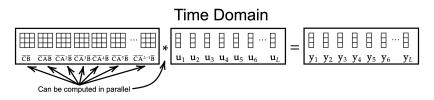


Assume we have *L* processors that can be run in parallel.



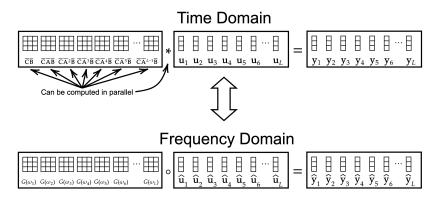
Assume we have *L* processors that can be run in parallel.

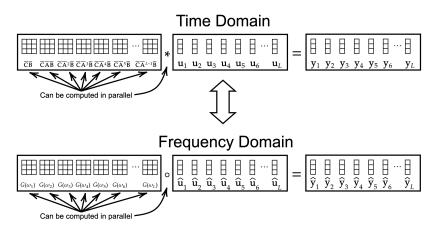
• Time complexity of RNN: $\mathcal{O}(L \cdot \text{ time per step})$.

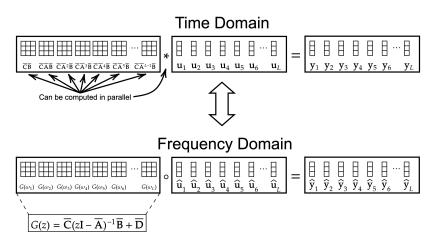


Assume we have *L* processors that can be run in parallel.

- Time complexity of RNN: $\mathcal{O}(L \cdot \text{ time per step})$.
- Time complexity of SSM: O(L + time per step).







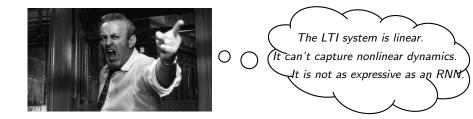
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

An SSM can be Made Deep

Seq. Models	RNNs	More Models	Recap of SSMs
00000	0000000	0000000	0000000

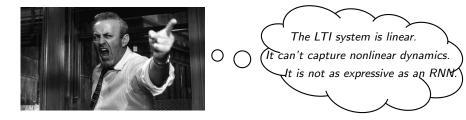
The Imaginary Story

An SSM can be Made Deep

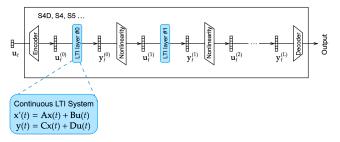


Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	00000000	0000000

An SSM can be Made Deep



An LTI system is linear, but an SSM is not.



Seq. Models	RNNs	More Models	
00000	00000000	0000000	

Recap of SSMs

The Real Story 000000000 The Imaginary Story 00000000

Training Stability of SSMs

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	00000000

The gradient is the gradient. It doesn't matter how you compute it.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

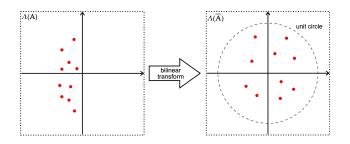
Answer: by discretizing the system with a small $\Delta t!$

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

Answer: by discretizing the system with a small $\Delta t!$

• By restricting $\Lambda(\mathbf{A})$ in the left half-plane, we guarantee that $\rho(\overline{\mathbf{A}}) < 1$.

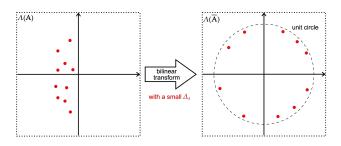


Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

The gradient is the gradient. It doesn't matter how you compute it. Then, why doesn't an SSM suffer from the vanishing and exploding gradient issues?

Answer: by discretizing the system with a small $\Delta t!$

- By restricting $\Lambda(\mathbf{A})$ in the left half-plane, we guarantee that $\rho(\overline{\mathbf{A}}) < 1$.
- By setting Δt small, we have that $\rho(\overline{\mathbf{A}})$ is close to one.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

SSMs can Capture the Long-Range Dependency

SSMs can Capture the Long-Range Dependency

 $\mathsf{Long}\text{-}\mathsf{Range}\ \mathsf{Dependency} \neq \mathsf{Long}\text{-}\mathsf{Range}\ \mathsf{Sequence}$

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

SSMs can Capture the Long-Range Dependency

Long-Range Dependency \neq Long-Range Sequence

Model	List0ps	Text	Retrieval	Image	Pathfinder	Path-X	Avg.
(Input length)	(2,048)	(4,096)	(4,000)	(1,024)	(1,024)	(16,384)	
Transformer	36.37	64.27	57.46	42.44	71.40	X	53.66
Luna-256	37.25	64.57	79.29	47.38	77.72	×	59.37
H-Trans1D	49.53	78.69	63.99	46.05	68.78	×	61.41
CCNN	43.60	84.08	×	88.90	91.51	×	68.02
$Mega (\mathcal{O}(L^2))$	63.14	90.43	91.25	90.44	96.01	<u>97.98</u>	88.21
Mega-chunk ($\mathcal{O}(L)$)	58.76	<u>90.19</u>	90.97	85.80	94.41	93.81	85.66
S4D-LegS	60.47	86.18	89.46	88.19	93.06	91.95	84.89
S4-LegS	59.60	86.82	90.90	88.65	94.20	96.35	86.09
Liquid-S4	<u>62.75</u>	89.02	91.20	<u>89.50</u>	94.8	96.66	87.32
S5	62.15	89.31	91.40	88.00	<u>95.33</u>	98.58	<u>87.46</u>

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

We saw that one can compute an LTI system from its transfer function:

$$\hat{\mathbf{y}}(s) = \mathbf{G}(is)\hat{\mathbf{u}}(s), \qquad \mathbf{G}(is) = \mathbf{C}(is\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

We saw that one can compute an LTI system from its transfer function:

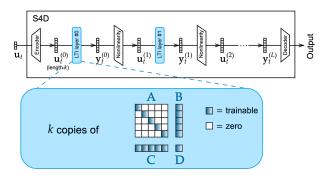
$$\hat{\mathbf{y}}(s) = \mathbf{G}(is)\hat{\mathbf{u}}(s), \qquad \mathbf{G}(is) = \mathbf{C}(is\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$

A key question is: how can we efficiently sample G?

We saw that one can compute an LTI system from its transfer function:

$$\hat{\mathbf{y}}(s) = \mathbf{G}(is)\hat{\mathbf{u}}(s), \qquad \mathbf{G}(is) = \mathbf{C}(is\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$

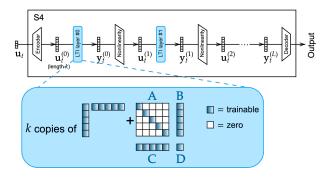
A key question is: how can we efficiently sample **G**? From now on, we assume that an LTI system is single-input/single-output (SISO). Moreover, the matrix **A** is diagonal.

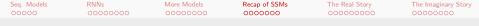


We saw that one can compute an LTI system from its transfer function:

$$\hat{\mathbf{y}}(s) = \mathbf{G}(is)\hat{\mathbf{u}}(s), \qquad \mathbf{G}(is) = \mathbf{C}(is\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$

A key question is: how can we efficiently sample **G**? From now on, we assume that an LTI system is single-input/single-output (SISO). Moreover, the matrix **A** is diagonal.

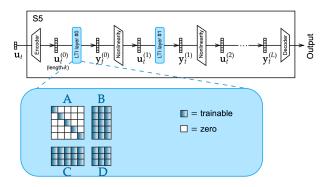




We saw that one can compute an LTI system from its transfer function:

$$\hat{\mathbf{y}}(s) = \mathbf{G}(is)\hat{\mathbf{u}}(s), \qquad \mathbf{G}(is) = \mathbf{C}(is\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$

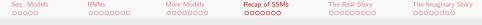
A key question is: how can we efficiently sample **G**? From now on, we assume that an LTI system is single-input/single-output (SISO). Moreover, the matrix **A** is diagonal.



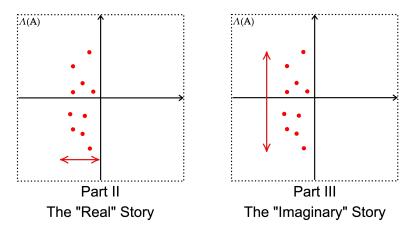
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

As mentioned earlier, some key insights could be obtained by studying the spectrum of **A**. When $\mathbf{A} = \text{diag}(a_1, \ldots, a_n)$ is diagonal, we have $\Lambda(\mathbf{A}) = \{a_1, \ldots, a_n\}.$



As mentioned earlier, some key insights could be obtained by studying the spectrum of **A**. When $\mathbf{A} = \text{diag}(a_1, \ldots, a_n)$ is diagonal, we have $\Lambda(\mathbf{A}) = \{a_1, \ldots, a_n\}.$



Seq. Models

(NNs)00000000 More Models

Recap of SSMs 0000000 The Real Story

The Imaginary Story 00000000

The "Real" Story

cf. HOPE for a Robust Parameterization of Long-memory State Space Models

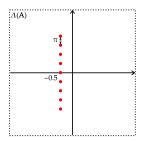
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	0000000	0000000

Initializing an SSM

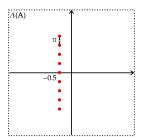
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	•00000000	0000000

Initializing an SSM

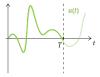
SSMs are very sensitive to initialization. You may have heard of the so-called HiPPO initialization.

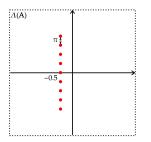


Traditionally, HiPPO was justified by the idea of "projecting onto orthogonal polynomials and storing the polynomial coefficients."

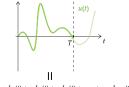


Λ(A) π -0.5 Traditionally, HiPPO was justified by the idea of "projecting onto orthogonal polynomials and storing the polynomial coefficients."





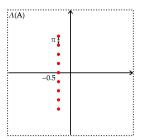
Traditionally, HiPPO was justified by the idea of "projecting onto orthogonal polynomials and storing the polynomial coefficients."



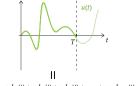
Input History = $c_0L_0(t) + c_1L_1(t) + c_2L_2(t) + \cdots + c_{n-1}L_{n-1}(t) + \cdots$

 $\mathbf{x}(T)$

SSMs are very sensitive to initialization. You may have heard of the so-called HiPPO initialization.

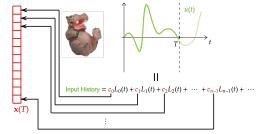


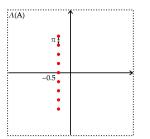
Traditionally, HiPPO was justified by the idea of "projecting onto orthogonal polynomials and storing the polynomial coefficients."



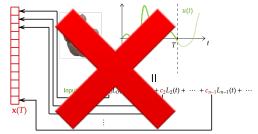
Input History = $c_0L_0(t) + c_1L_1(t) + c_2L_2(t) + \cdots + c_{n-1}L_{n-1}(t) + \cdots$

Δ(A) π -0.5 Traditionally, HiPPO was justified by the idea of "projecting onto orthogonal polynomials and storing the polynomial coefficients."





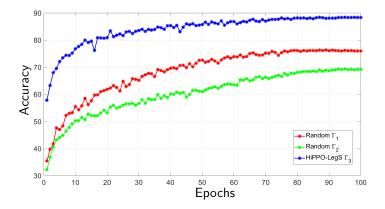
Traditionally, HiPPO was justified by the idea of "projecting onto orthogonal polynomials and storing the polynomial coefficients."



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	00000000	0000000
A Myst	ery				

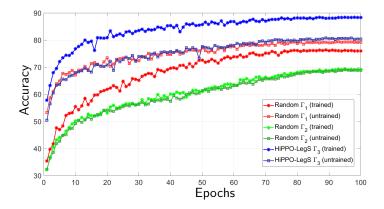
Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 00000000	The Imaginary Story 00000000
A Myster	y				

We train an SSM to learn the sequential CIFAR-10 task. We use different LTI systems at initialization.



Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 00000000	The Imaginary Story 00000000
A Myster	y				

We train an SSM to learn the sequential CIFAR-10 task. We use different LTI systems at initialization.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	00000000	0000000

• The Hankel operator associated with a continuous-time LTI system is

$$\mathbf{H}: L^2(0,\infty) \to L^2(0,\infty), \quad (\mathbf{Hv})(t) = \int_0^\infty \mathbf{C} \exp((t+\tau)\mathbf{A})\mathbf{Bv}(\tau)d\tau.$$

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

• The Hankel operator associated with a continuous-time LTI system is

$$\mathsf{H}: L^2(0,\infty) o L^2(0,\infty), \quad (\mathsf{Hv})(t) = \int_0^\infty \mathsf{C} \exp((t+ au)\mathsf{A})\mathsf{Bv}(au) d au.$$

• The Hankel matrix associated with a discrete LTI system is

$$\overline{\mathbf{H}}:\ell^2\to\ell^2,\quad \overline{\mathbf{H}}_{i,j}=\overline{\mathbf{C}\mathbf{A}}^{i+j}\overline{\mathbf{B}},\qquad i,j\geq 0.$$

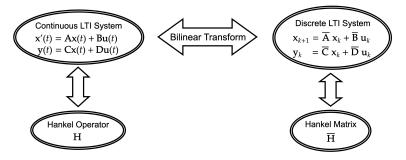
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

• The Hankel operator associated with a continuous-time LTI system is

$$\mathsf{H}: L^2(0,\infty) o L^2(0,\infty), \quad (\mathsf{Hv})(t) = \int_0^\infty \mathsf{C} \exp((t{+} au)\mathsf{A})\mathsf{Bv}(au) d au.$$

• The Hankel matrix associated with a discrete LTI system is

$$\overline{\mathbf{H}}:\ell^2\to\ell^2,\quad \overline{\mathbf{H}}_{i,j}=\overline{\mathbf{C}\mathbf{A}}^{i+j}\overline{\mathbf{B}},\qquad i,j\geq 0.$$



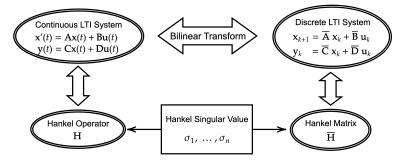
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

• The Hankel operator associated with a continuous-time LTI system is

$$\mathsf{H}: L^2(0,\infty) o L^2(0,\infty), \quad (\mathsf{Hv})(t) = \int_0^\infty \mathsf{C} \exp((t{+} au)\mathsf{A})\mathsf{Bv}(au) d au.$$

• The Hankel matrix associated with a discrete LTI system is

$$\overline{\mathbf{H}}:\ell^2\to\ell^2,\quad \overline{\mathbf{H}}_{i,j}=\overline{\mathbf{C}\mathbf{A}}^{i+j}\overline{\mathbf{B}},\qquad i,j\geq 0.$$



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

Reduced-Order Modeling with Hankel Singular Values

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

Reduced-Order Modeling with Hankel Singular Values

For any k < n, there exists an LTI system $\tilde{\Gamma} = (\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ with $\tilde{A} \in \mathbb{C}^{k \times k}$, such that

$$\|G - \tilde{G}\|_{\infty} \leq \sum_{j=k+1}^{n} \sigma_j(\mathbf{H}) \leq (n-k)\sigma_{k+1}(\mathbf{H}),$$

where G and \tilde{G} are the transfer functions of Γ and $\tilde{\Gamma}$, respectively, and $\|\cdot\|_{\infty}$ is the infinity norm over the imaginal axis.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

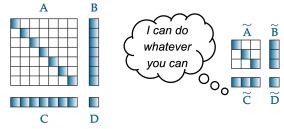
Reduced-Order Modeling with Hankel Singular Values

For any k < n, there exists an LTI system $\tilde{\Gamma} = (\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ with $\tilde{A} \in \mathbb{C}^{k \times k}$, such that

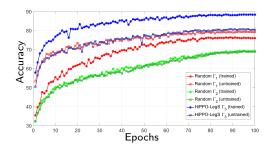
$$\|G - \tilde{G}\|_{\infty} \leq \sum_{j=k+1}^{n} \sigma_j(\mathbf{H}) \leq (n-k)\sigma_{k+1}(\mathbf{H}),$$

where G and \tilde{G} are the transfer functions of Γ and $\tilde{\Gamma}$, respectively, and $\|\cdot\|_{\infty}$ is the infinity norm over the imaginal axis.

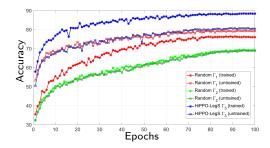
Hence, fast decaying Hankel singular values \Rightarrow many states in ${\bf x}$ are redundant.



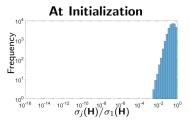
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Sto
00000	0000000	0000000	0000000	00000000	0000000

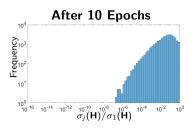


Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	000000000	0000000

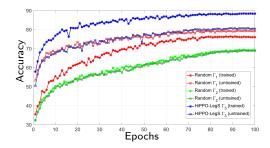


Hankel singular values of Γ_3 :

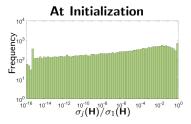


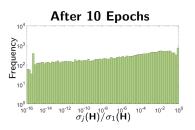


Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	000000000	0000000

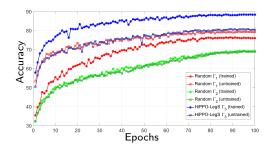


Hankel singular values of Γ_2 :

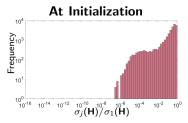


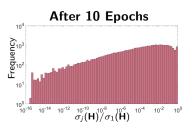


Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	000000000	0000000



Hankel singular values of Γ_1 :





Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	-
00000	0000000	0000000	0000000	000000000	

The Imaginary Story 0000000

Two Weaknesses of SSMs

Two Weaknesses of SSMs

From a random matrix theory perspective, high-rank LTI systems are scarce. Hence, even with a proper initialization, one can easily lose numerical ranks during training.

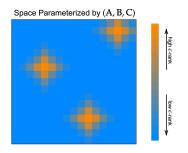
Two Weaknesses of SSMs

From a random matrix theory perspective, high-rank LTI systems are scarce. Hence, even with a proper initialization, one can easily lose numerical ranks during training.

The ϵ -rank of a random LTI system, i.e., the number of Hankel singular values σ_i with

$$\frac{\sigma_j}{\sigma_1} > \epsilon,$$

is roughly $\mathcal{O}(n^{1/2+a \text{ bit}})$ with high probability.



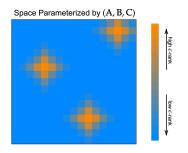
Two Weaknesses of SSMs

From a random matrix theory perspective, high-rank LTI systems are scarce. Hence, even with a proper initialization, one can easily lose numerical ranks during training.

The ϵ -rank of a random LTI system, i.e., the number of Hankel singular values σ_i with

$$\frac{\sigma_j}{\sigma_1} > \epsilon,$$

is roughly $\mathcal{O}(n^{1/2+a \text{ bit}})$ with high probability.



Two Weaknesses of SSMs

The numerical stability of an LTI system depends on its parameters, making an SSM potentially not numerically stable over training.

The numerical stability of an LTI system depends on its parameters, making an SSM potentially not numerically stable over training.

When an LTI system in perturbed with

$$\|\mathbf{A} - \tilde{\mathbf{A}}\|_{\mathsf{max}} \leq \Delta_{\mathcal{A}}, \qquad \|\mathbf{B} \circ \mathbf{C}^\top - \tilde{\mathbf{B}} \circ \tilde{\mathbf{C}}^\top\|_{\mathsf{max}} \leq \Delta_{\mathcal{B}}.$$

The transfer function perturbation can be bounded by

$$\|G - \tilde{G}\|_{\infty} \leq n\Delta_B \max_j \frac{1}{|\operatorname{Re}(a_j)|} + 4n\Delta_A \max_j \frac{|b_j c_j|}{|\operatorname{Re}(a_j)|^2}.$$

Moreover, this bound is tight up to a factor of n.

The numerical stability of an LTI system depends on its parameters, making an SSM potentially not numerically stable over training.

When an LTI system in perturbed with

$$\|\mathbf{A} - \tilde{\mathbf{A}}\|_{\mathsf{max}} \leq \Delta_{\mathcal{A}}, \qquad \|\mathbf{B} \circ \mathbf{C}^\top - \tilde{\mathbf{B}} \circ \tilde{\mathbf{C}}^\top\|_{\mathsf{max}} \leq \Delta_{\mathcal{B}}.$$

The transfer function perturbation can be bounded by

$$\|G - \tilde{G}\|_{\infty} \leq n\Delta_B \max_j \frac{1}{|\operatorname{Re}(a_j)|} + 4n\Delta_A \max_j \frac{|b_j c_j|}{|\operatorname{Re}(a_j)|^2}$$

Moreover, this bound is tight up to a factor of n.

"[the Hankel singular values] decay more rapidly the farther the $\Lambda(\mathbf{A})$ falls in the left half of the complex plane." — [Baker et al., 2015]

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	0000000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story
00000	0000000	0000000	0000000	000000000

The Imaginary Story 00000000

HOPE State-Space Models

 Motivation: most LTI systems have low ranks and their numerical stability highly depends on the location of the poles a_j. Can we come up with a model that overcomes these issues?

Seq. Models	RNNs	More Models	Recap of SSMs
00000	00000000	00000000	0000000

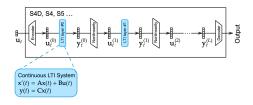
The Real Story

The Imaginary Story 00000000

- Motivation: most LTI systems have low ranks and their numerical stability highly depends on the location of the poles a_j. Can we come up with a model that overcomes these issues?
- Solution: instead of parameterizing the LTI system using A, B, and C, use a vector h ∈ Cⁿ to parameterize its Hankel matrix.

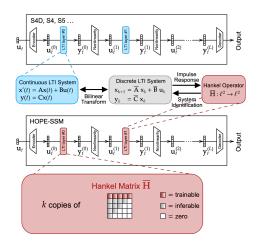
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	000000000	0000000

- Motivation: most LTI systems have low ranks and their numerical stability highly depends on the location of the poles a_j. Can we come up with a model that overcomes these issues?
- Solution: instead of parameterizing the LTI system using A, B, and C, use a vector h ∈ Cⁿ to parameterize its Hankel matrix.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	000000000	0000000

- Motivation: most LTI systems have low ranks and their numerical stability highly depends on the location of the poles a_j. Can we come up with a model that overcomes these issues?
- Solution: instead of parameterizing the LTI system using A, B, and C, use a vector h ∈ Cⁿ to parameterize its Hankel matrix.



Seq. Models 00000

NNs 00000000 More Models

Recap of SSMs 0000000 The Real Story

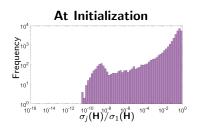
The Imaginary Story 00000000

The Hopes of HOPE

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

A Hankel matrix has slowly decaying singular values:

The ϵ -rank of an $n \times n$ random Hankel matrix is almost surely $\Theta(n)$ as $n \to \infty$.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

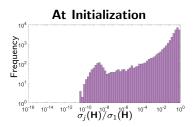
A Hankel matrix has slowly decaying singular values:

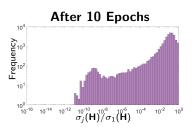
The ϵ -rank of an $n \times n$ random Hankel matrix is almost surely $\Theta(n)$ as $n \to \infty$.

Q A Hankel matrix is perfectly stable to perturbation:

Suppose we perturb **h** to $\tilde{\mathbf{h}}$. Then, we have

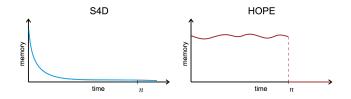
$$\|G - \tilde{G}\|_{\infty} \leq \sqrt{n} \|\mathbf{h} - \tilde{\mathbf{h}}\|_{2}.$$





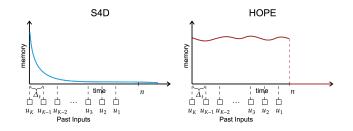
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

• A HOPE-SSM has slow-decaying memory.



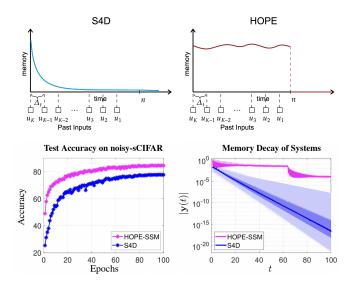
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	000000000	0000000

O A HOPE-SSM has slow-decaying memory.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	000000000	0000000

O A HOPE-SSM has slow-decaying memory.



Seq. Models	RNNs	More Models	Recap of SSMs	The Rea
00000	0000000	0000000	000000	0000

The Real Story

The Imaginary Story 00000000

Another Interpretation of HOPE

Another Interpretation of HOPE

Recall that the transfer function $\overline{\mathbf{G}}(z)$ is a rational function. Different ways to parameterize an LTI system correspond to different ways to represent a rational function.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	00000000	0000000

Another Interpretation of HOPE

Recall that the transfer function $\overline{\mathbf{G}}(z)$ is a rational function. Different ways to parameterize an LTI system correspond to different ways to represent a rational function.

Name	Formula	Parameterization	Models
Partial Fraction	$\sum_{j=1}^{n} \frac{\mathbf{b}_{j} \mathbf{c}_{j}}{\mathbf{z} - \mathbf{a}_{j}}$	diagonal A	S4D/S5
Barycentric Formula	$\frac{\sum_{j=1}^{n} \frac{a_j}{z-z_j}}{1+\sum_{j=1}^{n} \frac{b_j}{z-z_j}}$	diagplus-rank-one A	S4
Laurent Series	$\sum_{j=1}^{n} \frac{\mathbf{h}_{j} z^{-j}}{\mathbf{h}_{j} z^{-j}}$	Hankel matrix	HOPE

Seq. Models

NNs 00000000 More Models

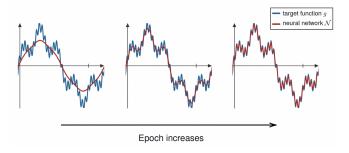
Recap of SSMs 0000000 The Real Story 00000000 The Imaginary Story 00000000

The "Imaginary" Story

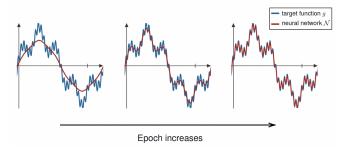
cf. Tuning Frequency Bias of State Space Models

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

One partial answer to the question from the title is called frequency bias:



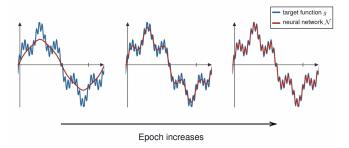
One partial answer to the question from the title is called frequency bias:



Good News.

Frequency bias prevents a NN from easily fitting high-frequency noises, making it good at generalization.

One partial answer to the question from the title is called frequency bias:



Good News.

Frequency bias prevents a NN from easily fitting high-frequency noises, making it good at generalization.

Bad News.

Frequency bias puts a curse on learning useful high-frequency information in the target.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real
00000	00000000	00000000	0000000	00000

he Real Story

The Imaginary Story

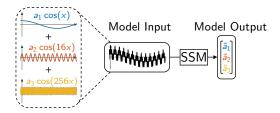
Do SSMs Have Frequency Bias?

There is a very natural notion of frequency for SSMs, i.e., the frequency along the time axis.

There is a very natural notion of frequency for SSMs, i.e., the frequency along the time axis.

We observe that SSMs also have frequency bias.

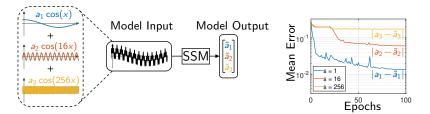
Problem Formulation



There is a very natural notion of frequency for SSMs, i.e., the frequency along the time axis.

We observe that SSMs also have frequency bias.

Results



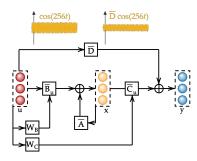
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

You may have imagined that frequency bias means that the output $\mathbf{y}(t)$ is of low frequency when the input $\mathbf{u}(t)$ contains high frequencies.

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	00000000	0000000

You may have imagined that frequency bias means that the output $\mathbf{y}(t)$ is of low frequency when the input $\mathbf{u}(t)$ contains high frequencies.

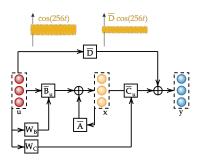
Unfortunately, this is not the case.



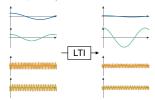
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

You may have imagined that frequency bias means that the output $\mathbf{y}(t)$ is of low frequency when the input $\mathbf{u}(t)$ contains high frequencies.

Unfortunately, this is not the case.



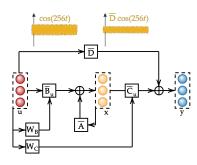
Frequency bias means an LTI system is better at distinguishing the low-frequency signals than the high-frequency ones.



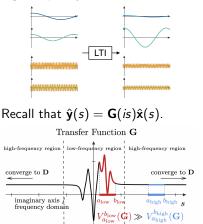
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

You may have imagined that frequency bias means that the output $\mathbf{y}(t)$ is of low frequency when the input $\mathbf{u}(t)$ contains high frequencies.

Unfortunately, this is not the case.



Frequency bias means an LTI system is better at distinguishing the low-frequency signals than the high-frequency ones.



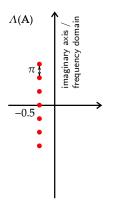
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	0000000	00000000	0000000

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

 An SSM is initialized with frequency bias.

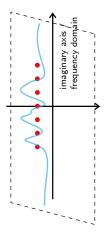
Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

 An SSM is initialized with frequency bias.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	000000000	0000000

 An SSM is initialized with frequency bias.

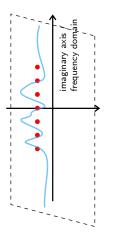


Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	00000000	0000000	00000000	0000000

Why Do SSMs Have Frequency Bias?

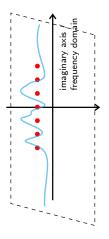
• An SSM is initialized with frequency bias.

• Will training push the eigenvalues of **A** to the high-frequency region?



Why Do SSMs Have Frequency Bias?

 An SSM is initialized with frequency bias.



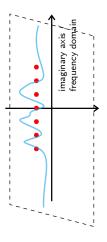
• Will training push the eigenvalues of **A** to the high-frequency region?

The gradient of a generic loss \mathcal{L} with respect to $Im(a_j)$ satisfies

$$\frac{\partial \mathcal{L}}{\partial \mathsf{Im}(a_j)} = \int_{-\infty}^{\infty} \frac{\partial \mathcal{L}}{\partial \mathbf{G}(is)} \cdot K_j(s) \, ds,$$
$$|K_j(s)| = \mathcal{O}\left(|s - \mathsf{Im}(a_j)|^{-2}\right).$$

Why Do SSMs Have Frequency Bias?

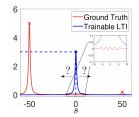
 An SSM is initialized with frequency bias.



• Will training push the eigenvalues of **A** to the high-frequency region?

The gradient of a generic loss \mathcal{L} with respect to $Im(a_j)$ satisfies $\frac{\partial \mathcal{L}}{\partial Im(a_j)} = \int_{-\infty}^{\infty} \frac{\partial \mathcal{L}}{\partial \mathbf{G}(is)} \cdot K_j(s) \, ds,$ $|K_j(s)| = \mathcal{O}\left(|s - Im(a_j)|^{-2}\right).$

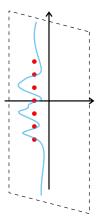
Hence, a_j only learns "local" frequencies.



Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 00000000	The Imaginary Story

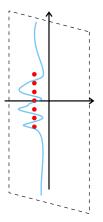
We can tune the frequency bias by scaling the initialization. In particular, we multiply each $Im(a_i)$ by a hyperparameter $\alpha > 0$.

We can tune the frequency bias by scaling the initialization. In particular, we multiply each $Im(a_i)$ by a hyperparameter $\alpha > 0$.



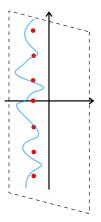
Default Bias

We can tune the frequency bias by scaling the initialization. In particular, we multiply each $Im(a_i)$ by a hyperparameter $\alpha > 0$.



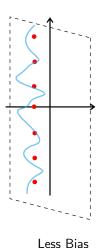
More Bias

We can tune the frequency bias by scaling the initialization. In particular, we multiply each $Im(a_i)$ by a hyperparameter $\alpha > 0$.



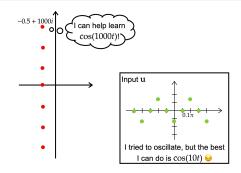
Less Bias

We can tune the frequency bias by scaling the initialization. In particular, we multiply each $Im(a_j)$ by a hyperparameter $\alpha > 0$.



A Caveat

The eigenvalues of **A** should not be scaled arbitrarily large. In particular, they should not go beyond the Nyquist frequency.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	00000000

We can apply a Sobolev-norm-based filter to the transfer function:

 $\hat{\mathbf{y}}(s) = \frac{(1+|s|)^{\beta}\mathbf{G}(is)\hat{\mathbf{u}}(s)}{\mathbf{G}(is)}$

We can apply a Sobolev-norm-based filter to the transfer function:

 $\hat{\mathbf{y}}(s) = (1+|s|)^{\beta} \mathbf{G}(is)\hat{\mathbf{u}}(s).$

Intuitively, β reweighs the frequency domain.

We can apply a Sobolev-norm-based filter to the transfer function:

 $\hat{\mathbf{y}}(s) = (1+|s|)^{\beta} \mathbf{G}(is)\hat{\mathbf{u}}(s).$

Intuitively, β reweighs the frequency domain.

• $\beta < 0 \Rightarrow$ low frequencies are weighted more, frequency bias is enhanced.

We can apply a Sobolev-norm-based filter to the transfer function:

 $\hat{\mathbf{y}}(s) = (1+|s|)^{\beta} \mathbf{G}(is)\hat{\mathbf{u}}(s).$

Intuitively, β reweighs the frequency domain.

- $\beta < 0 \Rightarrow$ low frequencies are weighted more, frequency bias is enhanced.
- $\beta > 0 \Rightarrow$ low frequencies are weighted less, frequency bias is diminished.

We can apply a Sobolev-norm-based filter to the transfer function:

 $\hat{\mathbf{y}}(s) = (1+|s|)^{\beta} \mathbf{G}(is)\hat{\mathbf{u}}(s).$

Intuitively, β reweighs the frequency domain.

- $\beta < 0 \Rightarrow$ low frequencies are weighted more, frequency bias is enhanced.
- $\beta > 0 \Rightarrow$ low frequencies are weighted less, frequency bias is diminished.

Surprisingly, β also affects the training.

The gradient of a generic loss \mathcal{L} with respect to $\operatorname{Im}(a_j)$ satisfies $\frac{\partial \mathcal{L}}{\partial \operatorname{Im}(a_j)} = \int_{-\infty}^{\infty} \frac{\partial \mathcal{L}}{\partial \mathbf{G}(is)} \cdot K_j^{(\beta)}(s) \, ds,$ $|K_j^{(\beta)}(s)| = \mathcal{O}\left(|s - \operatorname{Im}(a_j)|^{-2+\beta}\right).$

Seq. Models	RNNs	More Models	Recap of SSMs
00000	00000000	00000000	0000000

The Real Story

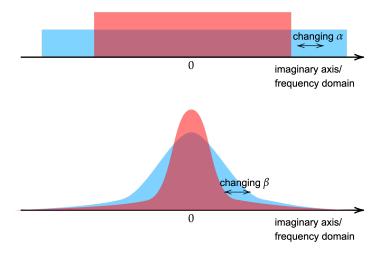
The Imaginary Story

Why Two Mechanisms?

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000	0000000	0000000	00000000	00000000

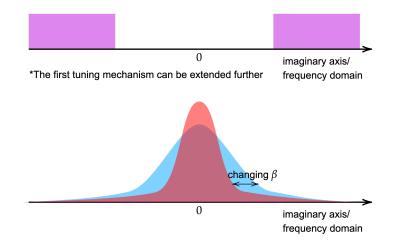
Why Two Mechanisms?

The hyperparameter α is a "hard" tuning strategy while β gives us a "soft" way.

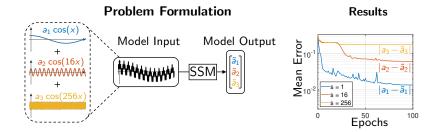


Why Two Mechanisms?

The hyperparameter α is a "hard" tuning strategy while β gives us a "soft" way.



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	0000000	000000	00000000	0000000

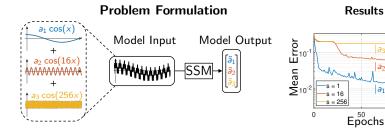


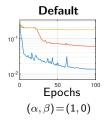
 $a_2 - \tilde{a}_2$

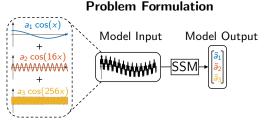
 $a_1 - \tilde{a}_1$

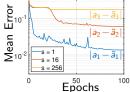
100

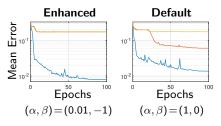
Some Examples of Tuning Frequency Bias

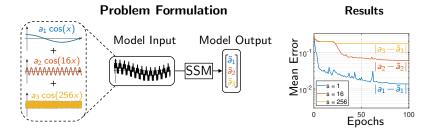


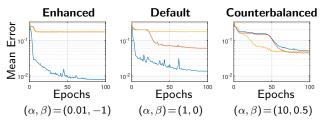


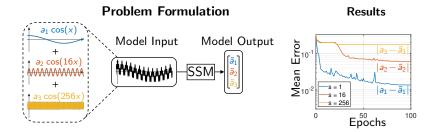


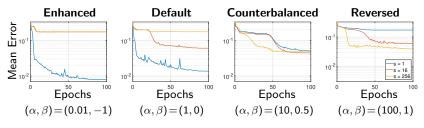












Seq.	Mc	de	ls
000	00	2	

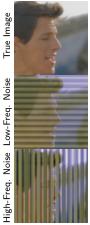
RNNs 200000000 More Models

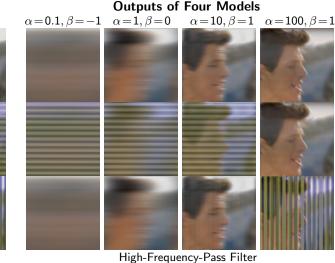
Recap of SSMs 0000000 The Real Story

The Imaginary Story

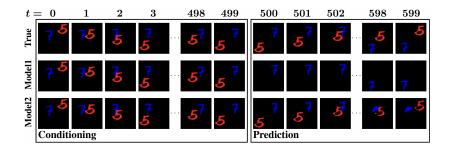
Some Examples of Tuning Frequency Bias

Inputs





Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000		0000000	000000000	0000000●



Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	0000000	00000000	0000000	00000000	0000000

	q. Models 2000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
C	Conclusio	n				

Seq. Models	RNNs	More Models	Recap of SSMs	The Real Story	The Imaginary Story
00000	00000000		0000000	000000000	00000000
Conclus	sion				

• SSMs are linear RNNs that allow fast and numerically stable computation.

Seq. Models	RNN₅ 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
Conclus	sion				

- SSMs are linear RNNs that allow fast and numerically stable computation.
- Hankel singular values explain the success or failure of an SSM.
 HOPE gives a more robust parameterization.

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
Conclus	sion				

- SSMs are linear RNNs that allow fast and numerically stable computation.
- Hankel singular values explain the success or failure of an SSM. HOPE gives a more robust parameterization.
- Frequency bias helps avoid overgeneralization but also prevents us from learning high-frequency information. Consider changing the hyperparameters α and β to tune frequency bias.

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
Conclus	sion				

- SSMs are linear RNNs that allow fast and numerically stable computation.
- Hankel singular values explain the success or failure of an SSM. HOPE gives a more robust parameterization.

Future Work:

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
Conclus	sion				

- SSMs are linear RNNs that allow fast and numerically stable computation.
- Hankel singular values explain the success or failure of an SSM. HOPE gives a more robust parameterization.
- Frequency bias helps avoid overgeneralization but also prevents us from learning high-frequency information. Consider changing the hyperparameters α and β to tune frequency bias.

Future Work:

I How do the real and the imaginary story interact?

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
Conclus	sion				

- SSMs are linear RNNs that allow fast and numerically stable computation.
- Hankel singular values explain the success or failure of an SSM. HOPE gives a more robust parameterization.
- Frequency bias helps avoid overgeneralization but also prevents us from learning high-frequency information. Consider changing the hyperparameters α and β to tune frequency bias.

Future Work:

- I How do the real and the imaginary story interact?
- Ontrols in SSMs.

Seq. Models 00000	RNNs 00000000	More Models	Recap of SSMs 0000000	The Real Story 000000000	The Imaginary Story 00000000
Conclus	sion				

- SSMs are linear RNNs that allow fast and numerically stable computation.
- Hankel singular values explain the success or failure of an SSM. HOPE gives a more robust parameterization.
- Frequency bias helps avoid overgeneralization but also prevents us from learning high-frequency information. Consider changing the hyperparameters α and β to tune frequency bias.

Future Work:

- I How do the real and the imaginary story interact?
- Ontrols in SSMs.
- SSMs for GenAl.