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Outline of This Tutorial

1 (First Hour) Part I: A Survey of Sequential Models

2 (Second Hour) Part II: A Deep Dive into State-Space Models
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Outline of Part I

1 Introduction to sequential models

2 Recurrent units and related models

3 More advanced sequential models
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Why not use a simple MLP?
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In this talk, we observe a sequence of vectors u1, . . . ,uL ∈ Rm. We want
to predict an output vector y ∈ Rp.
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Sequential Natures

1 The sequence may be long, making the
MLP too large and training too inefficient.

2 The sequence may have varying length,
making the MLP not applicable.

The number of
parameters should be
independent of the
sequence length L.

3 The sequence may come in sequence, making the inference
impossible until we receive the full input.

4 The sequence may contain temporal relationships that cannot be
captured by the inductive bias of an MLP.
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What Makes a Good Sequence Model?

A good sequence model is one that is ...
1 Expressive and Accurate

Theoretical expressiveness
Empirical accuracy

2 Efficient

Time complexity
Space complexity
Parallelizability

3 Easy to train

Can we escape from a local minimum?
Does the model always converge?

4 ... (e.g., robustness to noises, multiscale modeling)
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Recurrent Units
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Recurrent Neural Networks

A recurring theme in sequential models is to keep a latent state and
update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

xk = tanh(W1xk−1 + Uuk + b1),

yk = ReLU(W2xk + b2).

Unrolling an RNN:



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Recurrent Neural Networks

A recurring theme in sequential models is to keep a latent state and
update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

xk = tanh(W1xk−1 + Uuk + b1),

yk = ReLU(W2xk + b2).

Unrolling an RNN:



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Recurrent Neural Networks

A recurring theme in sequential models is to keep a latent state and
update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

xk = tanh(W1xk−1 + Uuk + b1),

yk = ReLU(W2xk + b2).

Unrolling an RNN:



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Recurrent Neural Networks

A recurring theme in sequential models is to keep a latent state and
update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

xk = tanh(W1xk−1 + Uuk + b1),

yk = ReLU(W2xk + b2).

Unrolling an RNN:



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Recurrent Neural Networks

A recurring theme in sequential models is to keep a latent state and
update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

xk = tanh(W1xk−1 + Uuk + b1),

yk = ReLU(W2xk + b2).

Hyperbolic Tangent: tanh

Unrolling an RNN:



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Recurrent Neural Networks

A recurring theme in sequential models is to keep a latent state and
update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

xk = tanh(W1xk−1 + Uuk + b1),

yk = ReLU(W2xk + b2).

Hyperbolic Tangent: tanh Sigmoid: σ

Unrolling an RNN:



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Recurrent Neural Networks

A recurring theme in sequential models is to keep a latent state and
update it with new inputs. Recurrent neural networks (RNNs) form a
most straightforward example of this idea.

xk = tanh(W1xk−1 + Uuk + b1),

yk = ReLU(W2xk + b2).

Unrolling an RNN:



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Expressiveness of RNNs

Good news: RNNs are universal ap-
proximators.

(Schäfer and Zimmermann, 2006)

Consider a finite-horizon dynamical
system

xk = f (xk−1,uk),

yk = g(xk),

where f is measurable and g is
continuous. It is arbitrarily close
(in the operator sense) to an RNN
with a potentially larger latent
state-space dimension (i.e., the
size of x).
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Efficiency of RNNs

On a CPU...

As L→∞, the computational time of the model is O(L).

As L→∞, the space complexity is O(L) for training and O(1) for
inferencing.

On a GPU...

The gradient has to be computed recurrently. Hence, no
parallelization can be done along the time axis. In particular, it takes
O(L · time per step) even on a GPU.
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Training Stability of RNNs

RNNs are not stable over training. They suffer from the infamous
vanishing and exploding gradient issues.

Gradients of a Linear RNN

Consider a simplified linear RNN with no bias term: xk = Wxk−1 + Uuk .
Given a generic loss function L, the gradient is

∂L
∂W

=
L∑

k=1

∂L
∂xk

∂xk
∂W

=
L∑

k=1

 ∂L
∂xk

k−1∑
j=1

Wjxk−j

 .

If ρ(W) > 1, then ‖Wj‖2 explodes
exponentially as j →∞.

Wj

If ρ(W) < 1, then ‖Wj‖2 vanishes
exponentially as j →∞.

Wj
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Why Do We Observe Vanishing/Exploding Gradients?

The memory of an input is dampened or magnified by a constant factor.
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Why Do We Observe Vanishing/Exploding Gradients?

If we can make the memory decay or amplify differently at every step,
then we can reduce the vanishing/exploding gradient issues.

This is partially why a deep MLP does not suffer from such issues.
Unfortunately, we cannot train a different Wk for each step k. We need
to be smarter in constructing the recurrent unit.
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Long Short-Term Memory

Long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] is
a variant of an SSM that incorporates a long-term memory cell.

xk = ok ◦ tanh(ck),

ok = σ(Woxk−1 + Uouk + bo),

ck = fk ◦ ck−1 + ik ◦ c̃k ,

fk = σ(Wf xk−1 + Ufuk + bf ),

ik = σ(Wixk−1 + Uiuk + bi),

c̃k = tanh(Wcxk−1 + Ucuk + bc).
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Gated Recurrent Unit

Gated recurrent units (GRUs) [Cho et al., 2014] are similar to LSTMs in
many sense.

xk = (1− zk) ◦ xk−1 + zk ◦ x̃k ,

zk = σ(Wzxk−1 + Uzuk + bz),

x̃k = tanh(Wx(rk ◦xk−1)+Uxuk +bh),

rk = σ(Wrxk−1 + Uruk + br),
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Properties of LSTMs and GRUs

LSTMs and GRUs are ...

1 Are universal approximators.

2 Share the same time and space complexities with RNNs.
3 Suffer less from the vanishing or exploding gradient issues.

Key idea: the memory decay/enhancement is not constant per step.

LSTM GRU
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Other Sequential Models
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Transformers

Transformers form a class of models that are wildly used in NLP and CV.

[Vaswani et al.,
2017]
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Transformers

The backbone of a transformer is called the attention mechanism.
Compared to recurrent models, attention explicitly seeks a connection
between every pair of elements in a sequence.

ki = Wkxi ,

qi = Wqxi ,

vi = Wvxi ,

aij = q>i kj ,

cij =
exp(aij/

√
d)∑L

j=1 exp(aij/
√
d)
,

yi =
L∑

j=1

cijvj .
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Properties of Transformers

Every element in the sequence is in a symmetric position. There is
no natural inductive bias over the time axis.
Without any parallelization, computing
the attention takes O(L2) as L→∞.

However, it is very parallelizable ...

for inferencing;
for backpropagation, but the softmax
raises some difficulties in
parallelization.
Check out linear attention
[Katharopoulos et al., 2020] and
FlashAttention [Dao et al., 2022]!

ki = Wkxi , qi =Wqxi ,

vi =Wvxi , aij =q>i kj ,

cij =
exp(aij/

√
d)∑L

j=1 exp(aij/
√
d)
,

yi =
L∑

j=1

cijvj .

The model is not causal, so one cannot evaluate it without the
entire sequence.

Check out masking!
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State-Space Models

A state space model (SSM) [Gu et al., 2022] is very similar to an RNN.
Its recurrent units are based on linear, time-invariant (LTI) systems

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).

Wait... but your sequence is discrete.
We have to discretize the system with respect to some trainable sampling
period ∆t > 0:
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SSMs vs RNNs

RNN

xk =tanh(W1xk−1+Uuk +b1)

yk =ReLU(W2xk +b2)

SSM

x′(t)=Ax(t)+Bu(t)

y(t)=Cx(t)+Du(t)
or

xk =Axk−1 + Buk

yk =Cxk + Duk

R
N

N SSM

What are the main differences between an RNN
and an SSM?

1 An RNN is nonlinear while an SSM is linear.

2 An RNN is completely discrete while an SSM
has an underlying continuous system.
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Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).

Stay here for the
second half of the
tutorial!
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Training Stability of SSMs

The gradient is the gradient. It doesn’t matter how you compute it.
Then, why doesn’t an SSM suffer from the vanishing and exploding
gradient issues?

Answer: by discretizing the system with a small ∆t!

By restricting Λ(A) in the left half-plane, we guarantee that
ρ(A) < 1.

By setting ∆t small, we have that ρ(A) is close to one.

Stay here for the
second half of the
tutorial!
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Mambas

SSMs are good at learning tasks that involve long-range dependencies,
but their vanilla forms do not lead to good language models.
One of the reasons is that in an SSM, every element in a sequence is
processed using the same mechanism. The Mamba models [Gu and Dao,
2023] fix this issue by letting B and C depend on the input.

SSM

x′(t)=Ax(t)+Bu(t)

y(t)=Cx(t)+Du(t)

Mamba

x′(t)=Ax(t)+B(u(t))u(t)

y(t)=C(u(t))x(t)+Du(t)
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Properties of Mamba

The dynamical system in Mamba is time-variant. Hence, it cannot be
evaluated using a convolution. However, efficient parallel algorithms exist.
Right now, the success of Mamba is justified by its capability of
“selectively memorizing” the sequence.
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Outline of Part II

1 Recap of state-space models

2 The “real” story

3 The “imaginary” story
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Linear, Time-Invariant Systems

A state space model (SSM) [Gu et al., 2022] leverages linear,
time-variant (LTI) systems as its recurrent unit:

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).

We have to discretize the system with respect to some trainable sampling
period ∆t > 0:
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SSMs vs RNNs

RNN

xk =tanh(W1xk−1+Uuk +b1)

yk =ReLU(W2xk +b2)

SSM

x′(t)=Ax(t)+Bu(t)

y(t)=Cx(t)+Du(t)
or

xk =Axk−1 + Buk

yk =Cxk + Duk

R
N

N SSM

What are the main differences between an RNN
and an SSM?

1 An RNN is nonlinear while an SSM is linear.

2 An RNN is completely discrete while an SSM
has an underlying continuous system.
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Two Weaknesses of RNNs

1 We have to backpropagate through an RNN recurrently. Assuming a
sequence as a length of L, it takes O(L · time per step).

2 An RNN suffers from the exploding or vanishing gradient issues,
impairing the training stability or the long-range memory retention.

Wj

If ρ(W) > 1, then ‖Wj‖2 ex-

plodes exponentially as j →∞.

Wj

If ρ(W) < 1, then ‖Wj‖2 van-

ishes exponentially as j →∞.
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Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

Efficiency of SSMs

An LTI system is linear. Hence, it can be evaluated more easily.

Assume we have L processors that can be run in parallel.

Time complexity of RNN: O(L · time per step).

Time complexity of SSM: O(L + time per step).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

An SSM can be Made Deep

The LTI system is linear.

It can’t capture nonlinear dynamics.

It is not as expressive as an RNN.

An LTI system is linear, but an SSM is not.
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Training Stability of SSMs

The gradient is the gradient. It doesn’t matter how you compute it.
Then, why doesn’t an SSM suffer from the vanishing and exploding
gradient issues?

Answer: by discretizing the system with a small ∆t!

By restricting Λ(A) in the left half-plane, we guarantee that
ρ(A) < 1.

By setting ∆t small, we have that ρ(A) is close to one.
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Overview of the Next Two Parts

We saw that one can compute an LTI system from its transfer function:

ŷ(s) = G(is)û(s), G(is) = C(isI− A)−1B + D.

A key question is: how can we efficiently sample G?

From now on, we assume that an LTI system is single-input/single-output
(SISO). Moreover, the matrix A is diagonal.
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Overview of the Next Two Parts

As mentioned earlier, some key insights could be obtained by studying
the spectrum of A. When A = diag(a1, . . . , an) is diagonal, we have
Λ(A) = {a1, . . . , an}.
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The “Real” Story

cf. HOPE for a Robust Parameterization of Long-memory State Space Models

https://arxiv.org/abs/2405.13975
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Initializing an SSM

SSMs are very sensitive to
initialization. You may have
heard of the so-called HiPPO
initialization.

Traditionally, HiPPO was justified by the
idea of “projecting onto orthogonal
polynomials and storing the polynomial
coefficients.”
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A Mystery

We train an SSM to learn the sequential CIFAR-10 task. We use different
LTI systems at initialization.

Epochs
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Hankel Singular Values

The Hankel operator associated with a continuous-time LTI system is

H : L2(0,∞)→ L2(0,∞), (Hv)(t) =

∫ ∞
0

C exp((t+τ)A)Bv(τ)dτ.

The Hankel matrix associated with a discrete LTI system is

H : `2 → `2, Hi,j = CA
i+j

B, i , j ≥ 0.
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Reduced-Order Modeling with Hankel Singular Values

For any k < n, there exists an LTI system Γ̃ = (Ã, B̃, C̃, D̃) with
Ã ∈ Ck×k , such that

‖G − G̃‖∞ ≤
n∑

j=k+1

σj(H) ≤ (n − k)σk+1(H),

where G and G̃ are the transfer functions of Γ and Γ̃, respectively,
and ‖ · ‖∞ is the infinity norm over the imaginal axis.

Hence, fast decaying Hankel singular values ⇒ many states in x are
redundant.
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Unravel the Mystery

Epochs
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Hankel singular values of Γ3:

At Initialization
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Two Weaknesses of SSMs

1 From a random matrix theory perspective, high-rank LTI systems are
scarce. Hence, even with a proper initialization, one can easily lose
numerical ranks during training.

The ε-rank of a random LTI sys-
tem, i.e., the number of Hankel
singular values σj with

σj
σ1

> ε,

is roughly O(n1/2+a bit) with
high probability.
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Two Weaknesses of SSMs

2 The numerical stability of an LTI system depends on its parameters,
making an SSM potentially not numerically stable over training.

When an LTI system in perturbed with

‖A− Ã‖max ≤ ∆A, ‖B ◦ C> − B̃ ◦ C̃>‖max ≤ ∆B .

The transfer function perturbation can be bounded by

‖G − G̃‖∞ ≤ n∆B max
j

1

|Re(aj)|
+ 4n∆A max

j

|bjcj |
|Re(aj)|2

.

Moreover, this bound is tight up to a factor of n.

“[the Hankel singular values] decay more rapidly the farther the Λ(A)
falls in the left half of the complex plane.” — [Baker et al., 2015]
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HOPE State-Space Models

Motivation: most LTI
systems have low ranks
and their numerical
stability highly depends
on the location of the
poles aj . Can we come
up with a model that
overcomes these issues?

Solution: instead of
parameterizing the LTI
system using A, B, and
C, use a vector h ∈ Cn

to parameterize its
Hankel matrix.
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The Hopes of HOPE
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The Hopes of HOPE

1 A Hankel matrix has slowly decaying singular values:

The ε-rank of an n × n random Hankel matrix is almost surely
Θ(n) as n→∞.

2 A Hankel matrix is perfectly stable to perturbation:

Suppose we perturb h to h̃. Then, we have

‖G − G̃‖∞ ≤
√
n‖h− h̃‖2.

At Initialization

σj (H)/σ1(H)
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After 10 Epochs
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The Hopes of HOPE

3 A HOPE-SSM has slow-decaying memory.
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Another Interpretation of HOPE

Recall that the transfer function G(z) is a rational function. Different
ways to parameterize an LTI system correspond to different ways to
represent a rational function.

Name Formula Parameterization Models

Partial Fraction
∑n

j=1
bjcj
z−aj diagonal A S4D/S5

Barycentric Formula

∑n
j=1

aj
z−zj

1+
∑n

j=1

bj
z−zj

diag.-plus-rank-one A S4

Laurent Series
∑n

j=1 hjz
−j Hankel matrix HOPE
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The “Imaginary” Story

cf. Tuning Frequency Bias of State Space Models

https://arxiv.org/abs/2410.02035
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Why Do Neural Networks Generalize That Well?

One partial answer to the question from the title is called frequency bias:

Good News.

Frequency bias prevents a NN from
easily fitting high-frequency noises,
making it good at generalization.

Bad News.

Frequency bias puts a curse on
learning useful high-frequency
information in the target.
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Do SSMs Have Frequency Bias?

There is a very natural notion of frequency for SSMs, i.e., the frequency
along the time axis.
We observe that SSMs also have frequency bias.

Problem Formulation

Model Input Model Output

SSM

a1 cos(x)

a2 cos(16x)

a3 cos(256x)

ã1
ã2
ã3

0 50 100

10
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10
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s = 1
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Results
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What is the Frequency Bias of an SSM?

You may have imagined that
frequency bias means that the
output y(t) is of low frequency
when the input u(t) contains high
frequencies.
Unfortunately, this is not the case.

Frequency bias means an LTI
system is better at distinguishing
the low-frequency signals than the
high-frequency ones.

Recall that ŷ(s) = G(is)x̂(s).



Seq. Models RNNs More Models Recap of SSMs The Real Story The Imaginary Story

What is the Frequency Bias of an SSM?

You may have imagined that
frequency bias means that the
output y(t) is of low frequency
when the input u(t) contains high
frequencies.

Unfortunately, this is not the case.

Frequency bias means an LTI
system is better at distinguishing
the low-frequency signals than the
high-frequency ones.
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Why Do SSMs Have Frequency Bias?

An SSM is
initialized with
frequency bias.

Will training push the eigenvalues of A to the
high-frequency region?

The gradient of a generic loss L with re-
spect to Im(aj) satisfies

∂L
∂Im(aj)

=

∫ ∞
−∞

∂L
∂G(is)

· Kj(s) ds,

|Kj(s)| = O
(
|s − Im(aj)|−2

)
.

Hence, aj only learns “local” frequencies.
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Tuning Frequency Bias via Initialization

We can tune the frequency bias by scaling the initialization. In particular,
we multiply each Im(aj) by a hyperparameter α > 0.

Default Bias

A Caveat

The eigenvalues of A should not be scaled
arbitrarily large. In particular, they should not go
beyond the Nyquist frequency.
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Tuning Frequency Bias via Training

We can apply a Sobolev-norm-based filter to the transfer function:

ŷ(s) = (1 + |s|)βG(is)û(s).

Intuitively, β reweighs the frequency domain.

β < 0⇒ low frequencies are weighted more, frequency bias is
enhanced.

β > 0⇒ low frequencies are weighted less, frequency bias is
diminished.

Surprisingly, β also affects the training.

The gradient of a generic loss L with respect to Im(aj) satisfies

∂L
∂Im(aj)

=

∫ ∞
−∞

∂L
∂G(is)

· K (β)
j (s) ds,

|K (β)
j (s)| = O

(
|s − Im(aj)|−2+β

)
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ŷ(s) = (1 + |s|)βG(is)û(s).
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The hyperparameter α is a “hard” tuning strategy while β gives us a
“soft” way.
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Some Examples of Tuning Frequency Bias
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|a3−ã3|
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|a2−ã2|
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Conclusion

Conclusion:

1 SSMs are linear RNNs that allow fast and numerically stable
computation.

2 Hankel singular values explain the success or failure of an SSM.
HOPE gives a more robust parameterization.

3 Frequency bias helps avoid overgeneralization but also prevents us
from learning high-frequency information. Consider changing the
hyperparameters α and β to tune frequency bias.

Future Work:

1 How do the real and the imaginary story interact?

2 Controls in SSMs.

3 SSMs for GenAI.
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1 How do the real and the imaginary story interact?

2 Controls in SSMs.

3 SSMs for GenAI.
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