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Identify Successful SSMs via Hankel Singular Values Fix the Weaknesses by Parameterizing with Hankel Operators

State-Space Models

State-space models (SSMs) leverage linear, time-invariant (LTI) systems, One can use Hankel singular values of LTI systems in an SSM to explain its success SD,84,85... - . Every (discrete) LTI system T =
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y(t) = Cx(t) + Du(t), low-degree one, meaning that it has limited expressiveness. u: u? B yP & WwP B yP K] u?  yP| 9 ply infinite Hankel matrix
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uengtfuc)’“_'“ YN R e N T 4 § 10 10 - B trainable parameters. Importantly,
Z T o-- g B ———— (7 — BN the singular values of the Hankel
g T~ = | | | Hankel Matrix H = .
/' \ E TNIEX [ = trainable matrix H are exactly the Hankel sin-
fq B . ) 0038 il ot ol qof 8 of (o2 0 8 et s 1ol o 108 it mf gl MO i e o rh o8 gt ge? gl k copies of = Inferable gular values of the LTI system. Moti-
El = trainable ' o]0 ' 0/o1 0/ . - e y vated by the Hankel operator theory,
k copies of , - 4810 our model is called HOPE.
/ Hankel singular values are large \ Hankel singular values of /Hankel singular values of the systems\
FTTTT] B without training the systems I". the LTI systems always decay fast, are large at initialization and
\ C D / When one s,-tarts to train I, however, making t.he performance of the SSM rema.in reasona-bl-y high after training. Beneflt |: ng h_Rank Hankel Operators are Abundant
the Hankel singular values decay fast, suboptimal regardless of whether In this case, training the LTI systems
iqpairing the performance of the modw the systems are trained or not. \ accelerates the optimization. /

Just like random matrices, a random Hankel matrix has a high numerical rank with high

_ probability. Hence, one is not at risk of losing slow-decaying Hankel singular values.
Weakness I: High-Degree LTI Systems are Scarce Space Parameterized by h

A canonical SSM is highly sensitive to initialization and training hyperparameters. Vari-

ations in how the LTI systems are initialized and in the learning rate used to train the From a rgndﬁm matrix theory persFeth\g, gne can show that high-degree LTl systems Assume | P e tid. randorm Gatssian
system I' = (A, B, C) can lead to significantly distinct behaviors on the same task. are rare in the parameter space of (A, B, C), _ by tin T
Space Parameterized by (A, B, C) variables. The e-rank of an n xn random Hankel
1r(T) = 0 1r(T) = 0.001 The erank of a “random” LTI system I' = Y matrix is almost surely ©(n) as n — oc.
m m m m m m m (A, B, C), i.e., the number of Hankel singular
* * * values o; with . V
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< 5% j it < of it s roughly O(n ) with high probability v Benefit II: High-Rank Hankel Operators are Numerically Stable
fzg + + m e Tl m m W " Hence, when training an LTIl system parameterized by (A, B, C), one is at the risk of
Epochs Epochs losing slow-decaying Hankel singular values. Suppose we perturb h to h. Let H be the Hankel matrix defined by h and H defined
| o o by h. Moreover, let T and T be the corresponding LTI systems. Then, we have
In particular, when LTIl systems are initialized by init;, inity, and inits, assigning I' Weakness II-: High-Degree LTI Systems are Numerically Unstable IT — FHH _|H— HHz < Jnllh — th.

a small learning rate impairs, levels, and improves the performance, respectively.

Suppose we perturb A = diag(ay,. .., a,) by a small amount A4 > 0 and B by
Apg > 0 to get a perturbed system I'. The perturbation of the system is

Towards Better Understanding the Issues: Hankel Singular Values Benefit lll: Hankel Operators Endow SSMs Long-Term Memory

As any matrix has its singular values, any LTI system has its Hankel singular values. T — I'|| g < nApmax : - AnA 4 max b, . From a continuous-time perspective, the memory of an LTI system parameterized by
i |Re(a;)] i |Re(a;)|* (A, B, C) often has fast (exponentially) decaying memory. The memory of a system
I Moreover, this bound is tight up to a factor of n. parameterized by h has no decay until ¢t = n, after which the system has no memory.
M 6120,> - >0,20 6120, > - >0,20 Hankel Singular Values a; and |bic; Yet, since continuous-time LTI systems in an SSM are discretized with some tunable
10 ———— m10* Most LTl systems with slow- sampling period At > 0, one can set At small to fit the entire sequence into the
1 X 1 matrix singular values of M degree-n system| Hankel singular values of I’ decaying Hankel singular val- “memory window” t & [O, n], even when the sequence Iength IS much Iarger than n.
m Forany 1 < k < n—1, exists a degree-k system n 5! ues have ai,...,a, nNear the S4D HOPE
R, }k T, = | 10° imaginary axis; hence, a high-
Mk — Lk }k > i degree system is numerically
e0 unstable during training. On 2 2 |
such that such that /Hankel Norm % e the left, one can find the ef- é é i
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The Hankel singular values tell us “how well we can compress a high-degree LTI sys- | A- T \ | a high-degree system (init;) A tme n A ume o
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