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State-Space Models

State-space models (SSMs) leverage linear, time-invariant (LTI) systems,
x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

to model long sequential data. In a canonical SSM (e.g. S4D), A ∈ Cn×n, B ∈ Cn×1,
C ∈ C1×n, and D ∈ C are the trainable parameters.

Initialization and Training Issues

A canonical SSM is highly sensitive to initialization and training hyperparameters. Vari-
ations in how the LTI systems are initialized and in the learning rate used to train the
system Γ = (A,B,C) can lead to significantly distinct behaviors on the same task.
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In particular, when LTI systems are initialized by init1, init2, and init3, assigning Γ
a small learning rate impairs, levels, and improves the performance, respectively.

Towards Better Understanding the Issues: Hankel Singular Values

As any matrix has its singular values, any LTI system has its Hankel singular values.

The Hankel singular values tell us “how well we can compress a high-degree LTI sys-
tem into a low-degree one.”

Identify Successful SSMs via Hankel Singular Values

One can use Hankel singular values of LTI systems in an SSM to explain its success
or failure. If the Hankel singular values decay fast, then an LTI system is close to a
low-degree one, meaning that it has limited expressiveness.
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Weakness I: High-Degree LTI Systems are Scarce

From a random matrix theory perspective, one can show that high-degree LTI systems
are rare in the parameter space of (A,B,C).

The ε-rank of a “random” LTI system Γ =

(A,B,C), i.e., the number of Hankel singular
values σj with

σj
σ1
> ε,

is roughly O(n1/2+a bit) with high probability.

Hence, when training an LTI system parameterized by (A,B,C), one is at the risk of
losing slow-decaying Hankel singular values.

Weakness II: High-Degree LTI Systems are Numerically Unstable

Suppose we perturb A = diag(a1, . . . , an) by a small amount ∆A > 0 and B by
∆B > 0 to get a perturbed system Γ̃. The perturbation of the system is

‖Γ− Γ̃‖H ≤ n∆B max
j

1

|Re(aj)|
+ 4n∆A max

j

|bjcj|
|Re(aj)|2

.

Moreover, this bound is tight up to a factor of n.
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Most LTI systems with slow-
decaying Hankel singular val-
ues have a1, . . . , an near the
imaginary axis; hence, a high-
degree system is numerically
unstable during training. On
the left, one can find the ef-
fect of the perturbations on
the Hankel singular values of
a high-degree system (init1)
and the distribution of aj.

Fix the Weaknesses by Parameterizing with Hankel Operators

Every (discrete) LTI system Γ =

(A,B,C) is associated with a dou-
bly infinite Hankel matrix

Hij = CA
i+j−2

B.

Instead of using (A,B,C) to param-
eterize an LTI system, we propose
to use h :=

[
h1 · · · hn

]>
. The only

change we introduced is a differ-
ent way to represent LTI systems by
trainable parameters. Importantly,
the singular values of the Hankel
matrix H are exactly the Hankel sin-
gular values of the LTI system. Moti-
vated by the Hankel operator theory,
our model is called HOPE.

Benefit I: High-Rank Hankel Operators are Abundant

Just like random matrices, a random Hankel matrix has a high numerical rank with high
probability. Hence, one is not at risk of losing slow-decaying Hankel singular values.

Assume h1, . . . , hn are i.i.d. random Gaussian
variables. The ε-rank of an n×n random Hankel
matrix is almost surely Θ(n) as n→∞.

Benefit II: High-Rank Hankel Operators are Numerically Stable

Suppose we perturb h to h̃. Let H be the Hankel matrix defined by h and H̃ defined
by h̃. Moreover, let Γ and Γ̃ be the corresponding LTI systems. Then, we have

‖Γ− Γ̃‖H = ‖H− H̃‖2 ≤
√
n‖h− h̃‖2.

Benefit III: Hankel Operators Endow SSMs Long-Term Memory

From a continuous-time perspective, the memory of an LTI system parameterized by
(A,B,C) often has fast (exponentially) decaying memory. The memory of a system
parameterized by h has no decay until t = n, after which the system has no memory.
Yet, since continuous-time LTI systems in an SSM are discretized with some tunable
sampling period ∆t > 0, one can set ∆t small to fit the entire sequence into the
“memory window” t ∈ [0, n], even when the sequence length is much larger than n.


