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What is Frequency Bias?

In the early epochs of neural network (NN) training, an overparameterized NN often
finds a low-frequency fit of the training data while higher frequencies are learned in
later epochs [2]. This phenomenon is called “frequency bias." It partially explains
why NN training can achieve small generalization errors.
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Fig. 1: Frequency bias states that the low-frequency patterns of the training data are learned faster than the high-frequency ones.

Neural Tangent Kernel

One way to theoretically understand the frequency bias is to use the so-called neural
tangent kernel (NTK). Given a NN, denoted by N (x;W(t)), with parameters W, the
NTK is given by K(x,x′;W) =

〈
(∂/∂W)N (x;W), (∂/∂W)N (x′;W)⟩. Assume we

want to learn a target function g on the unit hypersphere Sd−1 using the loss function

Φ(W) =
1

2

∫
Sd−1

|g(x)−N (x;W)|2dµ(x) (1)

and the gradient descent training algorithm with step size η. If a shallow-wide ReLU
NN is overparameterized and η is small enough, the dynamic of the residual zt(x) =
g(x)−N (x;W(t)) can be written as

zt+1(x)− zt(x) ≈ −η

∫
Sd−1

K∞(x,x′)zt(x
′)dµ(x′), (2)

where K∞ does not depend on W and approximates the NTK K(·, ·;W(t)).
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Fig. 2: The NTK characterizes the dynamic of the residual in NN training. The update in the residual is equal to η times the integral transform of

the prior residual.

Frequency Bias with Uniform Data

Suppose we are given a training dataset {(xi, g(xi))}Ni=1. If xi are uniformly dis-
tributed on Sd−1 and µ in eq. (1) is the counting measure on {xi}Ni=1, then we have

Φ(W) =
1

2

N∑
i=1

|g(xi)−N (xi;W)|2 ≈ N

2vol(Sd−1)

∫
Sd−1

|g(x)−N (x;W)|2dx. (3)

When dµ(x) = dx, [1] shows that the Fourier modes are the eigenfunctions of the
integral operator in eq. (2) and the higher the frequency, the smaller the eigenvalue.
In particular, if Yℓ is a frequency-ℓ Fourier mode, then we have∫

Sd−1
K∞(·,x′)Yℓ(x′)dx′ = O

(
ℓ−d)Yℓ(·).
target function g

neural network N

Epoch t + 1Epoch t

decom
pose

into
Fourier m

odes

Fig. 3: The Fourier modes are the eigenfunctions of the integral transform. The higher the frequency is, the smaller the eigenvalue of the

integral operator is, and the more slowly the neural network converges to the target function in the corresponding Fourier mode.

Frequency Bias with Nonuniform Data

When xi are not uniform, Φ in eq. (3) is no longer an approximation of the L2

loss with respect to the Lebesgue measure. To get frequency bias, we compute a
quadrature rule {ci}ni=1 at {xi}Ni=1 and define a quadrature-based loss function

Φ̃(W) =
1

2

N∑
i=1

ci|g(xi)−N (xi;W)|2 ≈ 1

2

∫
Sd−1

|g(x)−N (x;W)|2dx.

We can then use the spectral properties of K∞ to study frequency bias.
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Fig. 4: Frequency bias is observed when a quadrature-based loss function is used, but not when the mean-squared error is used.
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Fig. 5: Decay of the magnitudes of Fourier modes when we use Φ (dashed line) and Φ̃ (solid line) to train the NN.

Tuning Frequency Bias

We obtain frequency bias by using a quadrature-based loss function Φ̃. We can
further tune the frequency bias by using a Sobolev-norm-based loss function

Φs(W) =
1

2
∥g −N (·,W)∥2Hs. (4)

The parameter s determines the eigenvalues of the Fourier modes of the integral
operator in eq. (2). While Φ̃ is a discretization of Φ0, frequency bias is enhanced if
s < 0 and suppressed or reversed if s > 0.

s < 0 s > 0

Fig. 6: If s < 0, the low-frequency modes are learned faster, which enhances frequency bias; if s > 0, the high-frequency modes are learned

faster and frequency bias is suppressed or reversed.
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Fig. 7: We can tune frequency bias by changing s. As s increases, the low-frequency modes are learned more slowly and the high-frequency

modes faster. Frequency bias is reversed at s = 2.

Autoencoders with Frequency Bias

Tuning frequency bias is useful in solving real-world problems. We construct an
auto-encoder using NNs that deblurs MNIST images contaminated by noise. We
train the auto-encoder using the Φs loss function with various values of s.
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blurred image s = −1.0 s = 0.0 s = 1.0

blurred image s = −1.0 s = 0.0 s = 1.0

Fig. 8: When the images are contaminated by low-frequency noise, a positive s reverses the frequency bias and allows us to learn the

high-frequency data faster. When the high-frequency noise prevails, a negative s enhances the frequency bias and filters out the noise.
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