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State-space Models

State-space models (SSMs) leverage linear, time-invariant (LTI) systems,

x'(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(?),
to model long sequential data. To speed up the training and inference of an
SSM, one often enforces a simplified structure on A. For example, the S4

model uses a diagonal-plus-rank-one structure while the S4D model sets A to
be diagonal.
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The HiPPO Initialization

To attain a good performance, an SSM often needs to be initialized by pre-
designed matrices. A particularly successful one of them is called HIPPO-Legs.
The matrix A from HIPPO-LegS can be easily written into the diagonal-plus-
rank-one form by a similarity transform. On the other hand, however, it cannot
be diagonalized in a numerically stable way.
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To overcome this issue, the S4D model transforms A into the diagonal-plus-
rank-one form and discards the rank-one part, but that means it deviates from
the HIPPO-LegS initialization.
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Comparing the S4 and S4D Initializations

domain by multiplication:

y(s) = G(is)u(s).
We compare the transfer functions of the S4 initialization and those of the S4D
initialization.
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We show that as n, the number of internal states in x, goes to infinity, two

things happen:

(1) Gs4p converges to Gg4 pointwise. Hence, fixing a smooth input u, the output
y of S4D converges to the output y of S4 in L~.

(i) Gs4p does not converge to Gg4 uniformly. Hence, for any n, there exists a /
smooth input u so that y of S4D is very different from y of S4.
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Robustifying State-space Models for Long Sequences via Approximate Diagonalization
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Why can we remove the rank-one component from HIPPO-LegS to initialize an
S4D model? To answer this question, we study the transfer function G of an LT|
system. The transfer function maps the inputs to the outputs in the frequency
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large change In its output, making the S4D initialization not robust.
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Approximate Diagonalization

To make the initialization robust, we propose to approximately diagonalize
the HIPPO-LegS matrix A. Our strategy is called perturb-then-diagonalize
(PTD). That is, we perturb the matrix A to A = A + E and use A to initialize

the LTI systems. The eigenvector matrix of A is well-conditioned.
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The size of the perturbation E is a hyperparameter. One can use it to balance
the performance of the model and its numerical stability.
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PTD models in the Long-Range Arena

Moreover, since Gs4p IS Not smooth, a small input perturbation could cause a

Our PTD models demonstrate good performances in the Long-Range Arena.

Model ListOps Text Retrieval Image Pathfinder Path-X Average
S4 59.60 86.82  90.90  88.65 94.20 96.35  86.09
Liquid-S4 62.75 89.02  91.20 89.50 94.80 96.66  87.32
S4D 60.47 86.18  89.46  88.19 93.06 91.95  84.89
S4-PTD (ours) 60.65 838.32  91.07  88.27 94.79 96.39  86.58
SO 62.15 89.31 91.40  88.00 95.33 98.58 87.46
S5-PTD (ours) 62.75 89.41 91.51  §87.92 95.54 98.52 87.61




